动态规划----最长公共子序列(LCS)问题
题目:
求解两个字符串的最长公共子序列。如 AB34C 和 A1BC2 则最长公共子序列为 ABC。
思路分析:可以用dfs深搜,这里使用到了前面没有见到过的双重循环递归。也可以使用动态规划,在建表的时候一定要注意初始化以及在发现规律的时候一定要想怎么利用前面已经算过的结果来得到现在的结果,或者利用其他的一些规律来发现能够解题的规律。
图中单元格需要填上相应的数字(这个数字就是dp[i][j]的定义,记录的LCS的长度值)。可以发现规律,简单来说:如果横竖(i,j)对应的两个元素相等,该格子的值 = c[i-1,j-1] + 1。如果不等,取c[i-1,j] 和 c[i,j-1]的最大值。
当得到完整的DP表之后,我们可以通过倒推来得到相应的子序列,有时S1和S2的LCS并不是只有1个,本题并不是着重说要输出两个序列的所有LCS,只是要输出其中一个LCS。
代码:
import java.util.ArrayList;
public class LCS {
public static void main(String[] args) {
ArrayList ans = dfs("AB34C", "A1BC2");
System.out.println(ans); // 输出 [A, B, C]
System.out.println(dfs("3563243", "513141")); // 输出 [5, 3, 4]
System.out.println(solution("3069248", "513164318")); // 输出 [3, 6, 4, 8]
System.out.println(solution("123", "456")); // 输出为空
}
// 双重循环递归
static ArrayList<Character> dfs(String s1, String s2) {
int len1 = s1.length();
int len2 = s2.length();
ArrayList<Character> ans = new ArrayList<>();
for (int i = 0; i < len1; i++) {
// 求以i字符开头的公共子序列
ArrayList<Character> list = new ArrayList<>();
// 和s2的每个字符比较
for (int j = 0; j < len2; j++) {
if (s1.charAt(i) == s2.charAt(j)) {// 如果相同
list.add(s1.charAt(i));
list.addAll(dfs(s1.substring(i + 1), s2.substring(j + 1)));
break;
}
}
if (list.size() > ans.size()) {
ans = list;
}
}
return ans;
}
/**
* 生成动规表
*/
static String solution(String s1, String s2) {
int len1 = s1.length();
int len2 = s2.length();
int[][] dp = new int[len1 + 1][len2 + 1]; // 动规数组
int flag = 0;
// 初始化第一列
// O(M)
for (int i = 1; i <= len1; i++) {
if (flag == 1) {
dp[i][1] = 1;
} else if (s1.charAt(i - 1) == s2.charAt(0)) {
dp[i][1] = 1;
flag = 1;
} else {
dp[i][1] = 0;
}
}
flag = 0;
// 初始化第一行
// O(N)
for (int j = 1; j <= len2; j++) {
if (flag == 1) {
dp[1][j] = 1;
} else if (s2.charAt(j - 1) == s1.charAt(0)) {
dp[1][j] = 1;
flag = 1;
} else {
dp[1][j] = 0;
}
}
// O(M*N)
for (int i = 2; i <= len1; i++) { // M
for (int j = 2; j <= len2; j++) { // N
int maxOfLeftAndUp = Math.max(dp[i - 1][j], dp[i][j - 1]);
if (s1.charAt(i - 1) == s2.charAt(j - 1)) {
// dp[i][j] = Math.max(maxOfLeftAndUp, dp[i - 1][j - 1] + 1);
dp[i][j] = dp[i - 1][j - 1] + 1;// 这样也是对的……
} else {
dp[i][j] = maxOfLeftAndUp;
}
}
}
return parseDp(dp, s1, s2);
}
/**
* 解析动态规划表,得到最长公共子序列
*/
private static String parseDp(int[][] dp, String s1, String s2) {
int M = s1.length();
int N = s2.length();
StringBuilder sb = new StringBuilder();
while (M > 0 && N > 0) {
// 比左和上大,一定是当前位置的字符相等
if (dp[M][N] > Math.max(dp[M - 1][N], dp[M][N - 1])) {
sb.insert(0, s1.charAt(M - 1));
M--;
N--;
} else { // 一定选择的是左边和上边的大者
if (dp[M - 1][N] > dp[M][N - 1]) {
M--; // 往上移
} else {
N--; // 往左移
}
}
}
return sb.toString();
}
}
动态规划----最长公共子序列(LCS)问题的更多相关文章
- 动态规划 最长公共子序列 LCS,最长单独递增子序列,最长公共子串
LCS:给出两个序列S1和S2,求出的这两个序列的最大公共部分S3就是就是S1和S2的最长公共子序列了.公共部分 必须是以相同的顺序出现,但是不必要是连续的. 选出最长公共子序列.对于长度为n的序列, ...
- 动态规划——最长公共子序列LCS及模板
摘自 https://www.cnblogs.com/hapjin/p/5572483.html 这位大佬写的对理解DP也很有帮助,我就直接摘抄过来了,代码部分来自我做过的题 一,问题描述 给定两个字 ...
- 动态规划之最长公共子序列LCS(Longest Common Subsequence)
一.问题描述 由于最长公共子序列LCS是一个比较经典的问题,主要是采用动态规划(DP)算法去实现,理论方面的讲述也非常详尽,本文重点是程序的实现部分,所以理论方面的解释主要看这篇博客:http://b ...
- 《算法导论》读书笔记之动态规划—最长公共子序列 & 最长公共子串(LCS)
From:http://my.oschina.net/leejun2005/blog/117167 1.先科普下最长公共子序列 & 最长公共子串的区别: 找两个字符串的最长公共子串,这个子串要 ...
- 编程算法 - 最长公共子序列(LCS) 代码(C)
最长公共子序列(LCS) 代码(C) 本文地址: http://blog.csdn.net/caroline_wendy 题目: 给定两个字符串s,t, 求出这两个字符串最长的公共子序列的长度. 字符 ...
- C++版 - Lintcode 77-Longest Common Subsequence最长公共子序列(LCS) - 题解
版权声明:本文为博主Bravo Yeung(知乎UserName同名)的原创文章,欲转载请先私信获博主允许,转载时请附上网址 http://blog.csdn.net/lzuacm. C++版 - L ...
- 1006 最长公共子序列Lcs
1006 最长公共子序列Lcs 基准时间限制:1 秒 空间限制:131072 KB 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). 比如两个串为: abcicba abdks ...
- POJ 1458 Common Subsequence(最长公共子序列LCS)
POJ1458 Common Subsequence(最长公共子序列LCS) http://poj.org/problem?id=1458 题意: 给你两个字符串, 要你求出两个字符串的最长公共子序列 ...
- 51Nod 1006:最长公共子序列Lcs(打印LCS)
1006 最长公共子序列Lcs 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). ...
随机推荐
- 饮冰三年-人工智能-Python-29瀑布流
多适用于:整版以图片为主,大小不一的图片按照一定的规律排列的网页布局. 1:创建model类,并生成数据表 from django.db import models # Create your mod ...
- Joone
JOONE 一.什么是JOONE? 1.Joone是一个免费的神经网络框架来创建,训练和测试人造神经网络.目标是为最热门的Java技术创造一个强大的环境,为热情和专业的用户.2.Joone由一个中央引 ...
- Linux服务器常用工具
一.Ubuntu18版本 服务器 1)替换源.将原有的源注释掉 vi /etc/apt/sources.list deb http://mirrors.aliyun.com/ubuntu/ bioni ...
- Android Q 变更和新特性
安全和隐私变更 隐私保护是Android Q重要的主题之一,Android Q带来了一系列增强用户隐私保护的变更. 1 应用文件存储空间限制 应用访问限制是Android Q影响最大变更之一.在And ...
- kettle基础概念的学习
参考书籍:Pentaho Kettle Solutions中文版.由于最近不断的使用kettle,随着不断深入使用,遇到的问题越来越多,发现脑子那点货根本不够用,所以根据阅读把一些概念记录一下,方便自 ...
- C#学习-类型转换
类型转换的方式主要有以下几种: 隐式类型转换,由低级别类型向高级类型的转换过程.例如派生类可以隐式地转换为它的父类,装箱过程就属于这种隐式类型转换. 显式类型转换,也叫强制类型转换, 通过is和as运 ...
- Redis 常用命令总结
连接操作相关的命令 quit:关闭连接(connection) auth:简单密码认证 持久化 save:将数据同步保存到磁盘 bgsave:将数据异步保存到磁盘 lastsave:返回上次成功将数据 ...
- python全栈开发day117-MongoDB,pymongo
1.MongoDB操作 使用了不存在的对象即创建该对象 1.增加: 官方不推荐写法: insert([{},{},{}]) 官方推荐写法: insertOne({}) insertMany([{},{ ...
- Linux内核优化
相信做运维的同仁,进行运维环境初建时,必须要考虑到操作系统内核参数的优化问题,本人经历数次的运维环境重建后,决定要自行收集一份比较完善的系统内核参数优化说明文件出来,于是就有了下文,本文当前值是官方 ...
- 日常报错记录4:ssh工程复制粘贴顺序。
今天要复制一个项目. 久久不能如愿. web.xml里面老是有红的,比如applicationContext.xml字段. 它应该是web.xml要找它,于是,我先把applicationContex ...