动态规划----最长公共子序列(LCS)问题
题目:
求解两个字符串的最长公共子序列。如 AB34C 和 A1BC2 则最长公共子序列为 ABC。
思路分析:可以用dfs深搜,这里使用到了前面没有见到过的双重循环递归。也可以使用动态规划,在建表的时候一定要注意初始化以及在发现规律的时候一定要想怎么利用前面已经算过的结果来得到现在的结果,或者利用其他的一些规律来发现能够解题的规律。
图中单元格需要填上相应的数字(这个数字就是dp[i][j]的定义,记录的LCS的长度值)。可以发现规律,简单来说:如果横竖(i,j)对应的两个元素相等,该格子的值 = c[i-1,j-1] + 1。如果不等,取c[i-1,j] 和 c[i,j-1]的最大值。
当得到完整的DP表之后,我们可以通过倒推来得到相应的子序列,有时S1和S2的LCS并不是只有1个,本题并不是着重说要输出两个序列的所有LCS,只是要输出其中一个LCS。
代码:
import java.util.ArrayList;
public class LCS {
public static void main(String[] args) {
ArrayList ans = dfs("AB34C", "A1BC2");
System.out.println(ans); // 输出 [A, B, C]
System.out.println(dfs("3563243", "513141")); // 输出 [5, 3, 4]
System.out.println(solution("3069248", "513164318")); // 输出 [3, 6, 4, 8]
System.out.println(solution("123", "456")); // 输出为空
}
// 双重循环递归
static ArrayList<Character> dfs(String s1, String s2) {
int len1 = s1.length();
int len2 = s2.length();
ArrayList<Character> ans = new ArrayList<>();
for (int i = 0; i < len1; i++) {
// 求以i字符开头的公共子序列
ArrayList<Character> list = new ArrayList<>();
// 和s2的每个字符比较
for (int j = 0; j < len2; j++) {
if (s1.charAt(i) == s2.charAt(j)) {// 如果相同
list.add(s1.charAt(i));
list.addAll(dfs(s1.substring(i + 1), s2.substring(j + 1)));
break;
}
}
if (list.size() > ans.size()) {
ans = list;
}
}
return ans;
}
/**
* 生成动规表
*/
static String solution(String s1, String s2) {
int len1 = s1.length();
int len2 = s2.length();
int[][] dp = new int[len1 + 1][len2 + 1]; // 动规数组
int flag = 0;
// 初始化第一列
// O(M)
for (int i = 1; i <= len1; i++) {
if (flag == 1) {
dp[i][1] = 1;
} else if (s1.charAt(i - 1) == s2.charAt(0)) {
dp[i][1] = 1;
flag = 1;
} else {
dp[i][1] = 0;
}
}
flag = 0;
// 初始化第一行
// O(N)
for (int j = 1; j <= len2; j++) {
if (flag == 1) {
dp[1][j] = 1;
} else if (s2.charAt(j - 1) == s1.charAt(0)) {
dp[1][j] = 1;
flag = 1;
} else {
dp[1][j] = 0;
}
}
// O(M*N)
for (int i = 2; i <= len1; i++) { // M
for (int j = 2; j <= len2; j++) { // N
int maxOfLeftAndUp = Math.max(dp[i - 1][j], dp[i][j - 1]);
if (s1.charAt(i - 1) == s2.charAt(j - 1)) {
// dp[i][j] = Math.max(maxOfLeftAndUp, dp[i - 1][j - 1] + 1);
dp[i][j] = dp[i - 1][j - 1] + 1;// 这样也是对的……
} else {
dp[i][j] = maxOfLeftAndUp;
}
}
}
return parseDp(dp, s1, s2);
}
/**
* 解析动态规划表,得到最长公共子序列
*/
private static String parseDp(int[][] dp, String s1, String s2) {
int M = s1.length();
int N = s2.length();
StringBuilder sb = new StringBuilder();
while (M > 0 && N > 0) {
// 比左和上大,一定是当前位置的字符相等
if (dp[M][N] > Math.max(dp[M - 1][N], dp[M][N - 1])) {
sb.insert(0, s1.charAt(M - 1));
M--;
N--;
} else { // 一定选择的是左边和上边的大者
if (dp[M - 1][N] > dp[M][N - 1]) {
M--; // 往上移
} else {
N--; // 往左移
}
}
}
return sb.toString();
}
}
动态规划----最长公共子序列(LCS)问题的更多相关文章
- 动态规划 最长公共子序列 LCS,最长单独递增子序列,最长公共子串
LCS:给出两个序列S1和S2,求出的这两个序列的最大公共部分S3就是就是S1和S2的最长公共子序列了.公共部分 必须是以相同的顺序出现,但是不必要是连续的. 选出最长公共子序列.对于长度为n的序列, ...
- 动态规划——最长公共子序列LCS及模板
摘自 https://www.cnblogs.com/hapjin/p/5572483.html 这位大佬写的对理解DP也很有帮助,我就直接摘抄过来了,代码部分来自我做过的题 一,问题描述 给定两个字 ...
- 动态规划之最长公共子序列LCS(Longest Common Subsequence)
一.问题描述 由于最长公共子序列LCS是一个比较经典的问题,主要是采用动态规划(DP)算法去实现,理论方面的讲述也非常详尽,本文重点是程序的实现部分,所以理论方面的解释主要看这篇博客:http://b ...
- 《算法导论》读书笔记之动态规划—最长公共子序列 & 最长公共子串(LCS)
From:http://my.oschina.net/leejun2005/blog/117167 1.先科普下最长公共子序列 & 最长公共子串的区别: 找两个字符串的最长公共子串,这个子串要 ...
- 编程算法 - 最长公共子序列(LCS) 代码(C)
最长公共子序列(LCS) 代码(C) 本文地址: http://blog.csdn.net/caroline_wendy 题目: 给定两个字符串s,t, 求出这两个字符串最长的公共子序列的长度. 字符 ...
- C++版 - Lintcode 77-Longest Common Subsequence最长公共子序列(LCS) - 题解
版权声明:本文为博主Bravo Yeung(知乎UserName同名)的原创文章,欲转载请先私信获博主允许,转载时请附上网址 http://blog.csdn.net/lzuacm. C++版 - L ...
- 1006 最长公共子序列Lcs
1006 最长公共子序列Lcs 基准时间限制:1 秒 空间限制:131072 KB 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). 比如两个串为: abcicba abdks ...
- POJ 1458 Common Subsequence(最长公共子序列LCS)
POJ1458 Common Subsequence(最长公共子序列LCS) http://poj.org/problem?id=1458 题意: 给你两个字符串, 要你求出两个字符串的最长公共子序列 ...
- 51Nod 1006:最长公共子序列Lcs(打印LCS)
1006 最长公共子序列Lcs 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). ...
随机推荐
- No grammar constraints (DTD or XML Schema) referenced in the document.
问题描述 web.xml 使用 Servlet4.0 版本,No grammar constraints (DTD or XML Schema) referenced in the document. ...
- C#获取指定的文件是否是内部特殊版本的代码
把内容过程经常用到的内容片段珍藏起来,下面的内容内容是关于C#获取指定的文件是否是内部特殊版本的内容,希望对各朋友有所用处. using System;using System.Diagnostics ...
- 2-2、安装Filebeat
安装filebeat 第1步:安装Filebeat 开始之前:如果尚未安装Elastic Stack,请立即执行此操作. 请参阅Getting started with the Elastic Sta ...
- 模块2 hashlib;configparser; logging;
hashlib模块: hashlib模块提供了提供了常用的摘要算法,例如MD5,SHA1等. 什么是摘要算法呢?摘要算法又称哈希算法.散列算法.它通过一个函数,把任意长度的数据转换为一个长度固定的数据 ...
- Vuejs自定义select2指令
在做select2插件的时候遇到一些坑,最终解决如下: Vue.directive('select2', { inserted: function (el, binding, vnode) { var ...
- PHP金钱数字转金钱大写
/* * 数字金额转换成中文大写金额的函数 * String Int $num 要转换的小写数字或小写字符串 * return 大写数字 */ function num_to_rmb($num){ $ ...
- 开发中常用的JS知识点集锦
索引 1.对象深拷贝 2.网络图片转base64, 在线图片点击下载 3.常用CSS样式记录(超出宽高省略展示/播放icon/按钮背景颜色渐变...) 4.对象深拷贝 5.对象深拷贝 6.对象深拷贝 ...
- JS实现排序算法
代码如下: 1.冒泡排序 <script> var arr = [9, 8, 7, 5, 7, 1, 45, 12, 7, 74, 4]; for (var i = 0; i < a ...
- pwn学习之二
刚刚开始学习pwn,记录一下自己学习的过程. 今天get了第二道pwn题目的解答,做的题目是2017年TSCTF的easy fsb,通过这道题了解了一种漏洞和使用该漏洞获取shell的方法:即格式化字 ...
- 在命令行输入python出现“Warning:This Python interpreter is in a conda environment, but the environment has not been activated. Libraries may fail to load. To activate this environment please see https://conda.
[现象] 在命令行输入python出现“Warning:This Python interpreter is in a conda environment, but the environment h ...