对开发库的C#封装,屏蔽使用细节,可以快速安全的调用人脸识别相关API。具体见github地址。新增对.NET Core的支持,在Linux(Ubuntu下)测试通过。具体的使用例子和Demo详解,参见博客地址。

更新:
增加对V1.1两个新功能的支持。

关于人脸识别
目前的人脸识别已经相对成熟,有各种收费免费的商业方案和开源方案,其中OpenCV很早就支持了人脸识别,在我选择人脸识别开发库时,也横向对比了三种库,包括在线识别的百度、开源的OpenCV和商业库虹软(中小型规模免费)。

百度的人脸识别,才上线不久,文档不太完善,之前联系百度,官方也给了我基于Android的Example,但是不太符合我的需求,一是照片需要上传至百度服务器(这个是最大的问题),其次,人脸的定位需要自行去实现(捕获到人脸后上传进行识别)。

OpenCV很早以前就用过,当时做人脸+车牌识别时,最先考虑的就是OpenCV,但是识别率在当时不算很高,后来是采用了一个电子科大的老师自行开发的识别库(相对易用,识别率也还不错),所以这次准备做时,没有选择OpenCV。

虹软其实在无意间发现的,当时正在寻找开发库,正在测试Python的一个方案,就发现有新闻说虹软的识别库全面开放并且可以免费使用,而且是离线识别,所以就下载尝试了一下,发现识别率还不错,所以就暂定了采用虹软的识别方案。这里主要就给大家分享一下开发过程当中的一些坑和使用心得,顺便开源识别库的C# Wrapper。

SDK的C# Wrapper
由于虹软的库是采用C++开发的,而我的应用程序采用的是C#,所以,需要对库进行包装,便于C#的调用,包装的主要需求是可以在C#中快速方便的调用,无需考虑内存、指针等问题,并且具备一定的容错性。Wrapper库目前已经开源,大家可以到Github上进行下载,地址点击这里。Wrapper库基本上没有什么可以说的,无非是对PInvoke的包装,只是里面做了比较多的细节处理,屏蔽了调用细节,提供了相对高层的函数。有兴趣的可以看看源代码。
Wrapper库的使用例子
基本使用

注意使用之前,在虹软申请了新的Key后,需要同时更新libs下的三个dll文件,key和sdk的版本是相关联的,否则会抛出异常。

人脸检测(静态图片):

using (var detection = LocatorFactory.GetDetectionLocator("appId", "sdkKey"))
{
var image = Image.FromFile("test.jpg");
var bitmap = new Bitmap(image); var result = detection.Detect(bitmap, out var locateResult);
//检测到位置信息在使用完毕后,需要释放资源,避免内存泄露
using (locateResult)
{
if (result == ErrorCode.Ok && locateResult.FaceCount > 0)
{
using (var g = Graphics.FromImage(bitmap))
{
var face = locateResult.Faces[0].ToRectangle();
g.DrawRectangle(new Pen(Color.Chartreuse), face.X, face.Y, face.Width, face.Height);
} bitmap.Save("output.jpg", ImageFormat.Jpeg);
}
}
}

  

人脸跟踪(人脸跟踪一般用于视频的连续帧识别,相较于检测,又更高的执行效率,这里用静态图片做例子,实际使用和检测没啥区别):

using (var detection = LocatorFactory.GetTrackingLocator("appId", "sdkKey"))
{
var image = Image.FromFile("test.jpg");
var bitmap = new Bitmap(image); var result = detection.Detect(bitmap, out var locateResult);
using (locateResult)
{
if (result == ErrorCode.Ok && locateResult.FaceCount > 0)
{
using (var g = Graphics.FromImage(bitmap))
{
var face = locateResult.Faces[0].ToRectangle();
g.DrawRectangle(new Pen(Color.Chartreuse), face.X, face.Y, face.Width, face.Height);
} bitmap.Save("output.jpg", ImageFormat.Jpeg);
}
}
}

  

人脸对比:

using (var proccesor = new FaceProcessor("appid",
"locatorKey", "recognizeKey", true))
{
var image1 = Image.FromFile("test2.jpg");
var image2 = Image.FromFile("test.jpg"); var result1 = proccesor.LocateExtract(new Bitmap(image1));
var result2 = proccesor.LocateExtract(new Bitmap(image2)); //FaceProcessor是个整合包装类,集成了检测和识别,如果要单独使用识别,可以使用FaceRecognize类
//这里做演示,假设图片都只有一张脸
//可以将FeatureData持久化保存,这个即是人脸特征数据,用于后续的人脸匹配
//File.WriteAllBytes("XXX.data", feature.FeatureData);FeatureData会自动转型为byte数组 if ((result1 != null) & (result2 != null))
Console.WriteLine(proccesor.Match(result1[0].FeatureData, result2[0].FeatureData, true));
}

  

使用注意事项

LocateResult(检测结果)和Feature(人脸特征)都包含需要释放的内存资源,在使用完毕后,记得需要释放,否则会引起内存泄露。FaceProcessor和FaceRecognize的Match函数,在完成比较后,可以自动释放,只需要最后两个参数指定为true即可,如果是用于人脸匹配(1:N),则可以采用默认参数,这种情况下,第一个参数指定的特征数据不会自动释放,用于循环和特征库的特征进行比对。

整合的完整例子
在Github上,有完整的FaceDemo例子,里面主要实现了通过ffmpeg采集RTSP协议的图像(使用海康的摄像机),然后进行人脸匹配。在开发过程中遇到不少的坑。

人脸识别的首要工作就是捕获摄像机视频帧,这一块上是坑的最久的,因为最开始采用的是OpenCV的包装库,Emgu.CV,在开发过程中,捕获USB摄像头时,倒是问题不大,没有出现过异常。在捕获RTSP视频流时,会不定时的出现AccessviolationException异常,短则几十分钟,长则几个小时,总之就是不稳定。在官方Github地址上,也提了Issue,他们给出的答复是屏蔽的我业务逻辑,仅捕获视频流试试,结果问题依然,所以,我基本坑定了试Emgu.CV上面的问题。后来经过反复的实验,最终确定了选择ffmpeg。

ffmepg主要采用ProcessStartInfo进行调用,我采用的是NReco.VideoConverter(一个ffmpeg调用的包装,可以通过nuget搜索安装),虽然ffmpeg解决了稳定性问题,但是实际开发时,也遇到了不少坑,其中,最主要的是NReco.VideoConverter没有任何文档和例子(实际有,需要75刀购买),所以,自己研究了半天,如何捕获视频流并转换为Bitmap对象。只要实现这一步,后续就是调用Wrapper就行了。

FaceDemo详解

上面说到了,通过ffmpeg捕获视频流并转换Bitmap是重点,所以,这里也主要介绍这一块。

首先是ffmpeg的调用参数:

var setting =
new ConvertSettings
{
CustomOutputArgs = "-an -r 15 -pix_fmt bgr24 -updatefirst 1"
}; //-s 1920x1080 -q:v 2 -b:v 64k task = ffmpeg.ConvertLiveMedia("rtsp://admin:12qwaszxA@192.168.1.64:554/h264/ch1/main/av_stream", null,
outputStream, Format.raw_video, setting);
task.OutputDataReceived += DataReceived;
task.Start();

  

-an表示不捕获音频流,-r表示帧率,根据需求和实际设备调整此参数,-pix_fmt比较重要,一般情况下,指定为bgr24不会有太大问题(还是看具体设备),之前就是用成了rgb24,结果捕获出来的图像,人都变成阿凡达了,颜色是反的。最后一个参数,坑的我差点放弃这个方案。本身,ffmpeg在调用时,需要指定一个文件名模板,捕获到的输出会按照模板生成文件,如果要将数据输出到控制台,则最后传入一个-即可,最开始没有指定updatefirst,ffmpeg在捕获了第一帧后就抛出了异常,最后查了半天ffmpeg说明(完整参数说明非常多,输出到文本有1319KB),发现了这个参数,表示持续更新第一个文件。最后,在调用视频捕获是,需要指定输出格式,必须指定为Format.raw_video,实际上这个格式名称有些误导人,按道理将应该叫做raw_image,因为最终输出的是每帧原始的位图数据。

到此为止,还并没有解决视频流数据的捕获,因为又来一个坑,ProcessStartInfo的控制台缓冲区大小只有32768 bytes,即,每一次的输出,实际上并不是一个完整的位图数据。

//完整代码参加Github源代码
//代码片段1
private Bitmap _image;
private IntPtr _pImage; {
_pImage = Marshal.AllocHGlobal(1920 * 1080 * 3);
_image = new Bitmap(1920, 1080, 1920 * 3, PixelFormat.Format24bppRgb, _pImage);
} //代码片段2
private MemoryStream outputStream; private void DataReceived(object sender, EventArgs e)
{
if (outputStream.Position == 6220800)
lock (_imageLock)
{
var data = outputStream.ToArray(); Marshal.Copy(data, 0, _pImage, data.Length); outputStream.Seek(0, SeekOrigin.Begin);
}
}

  

花了不少时间摸索(不要看只有几行,人都整崩溃了),得出了上述代码。首先,我捕获的图像数据是24位的,并且图像大小是1080p的,所以,实际上,一个原始位图数据的大小为stride * height,即width * 3 * height,大小为6220800 bytes。所以,在判断了捕获数据到达这个大小后,就进行Bitmap转换处理,然后将MemoryStream的位置移动到最开始。需要注意的时,由于捕获到的是原始数据(不包含bmp的HeaderInfo),所以注意看Bitmap的构造方式,是通过一个指向原始数据位置的指针就行构造的,更新该图像时,也仅需要更新指针指向的位置数据即可,无需在建立新的Bitmap实例。

位图数据获取到了,就可以进行识别处理了,高高兴兴的加上了识别逻辑,但是现实总是充满了意外和惊喜,没错,坑又来了。没有加入识别逻辑的时候,捕获到的图像在PictureBox上显示非常正常,清晰、流畅,加上识别逻辑后,开始出现花屏(捕获到的图像花屏)、拖影、显示延迟(至少会延迟10-20秒以上)、程序卡顿,总之就是各种问题。最开始,我的识别逻辑写到DataReceived方法里面的,这个方法是运行于主线程外的另一个线程中的,其实按道理将,捕获、识别、显示位于一个线程中,应该是不会出现问题,我估计(不确定,没有去深入研究,如果谁知道实际原因,可以留言告诉我),是因为ffmpeg的原因,因为ffmpeg是单独的一个进程在跑,他的数据捕获是持续在进行的,而识别模块的处理时间大于每一帧的采集时间,所以,缓冲区中的数据没有得到及时处理,ffmpeg接收到的部分图像数据(大于32768的数据)被丢弃了,然后就出现了各种问题。最后,又是一次耗时不短的探索之旅。

private void Render()
{
while (_renderRunning)
{
if (_image == null)
continue; Bitmap image; lock (_imageLock)
{
image = (Bitmap) _image.Clone();
} if (_shouldShot){
WriteFeature(image);
_shouldShot = false;
} Verify(image); if (videoImage.InvokeRequired)
videoImage.Invoke(new Action(() => { videoImage.Image = image; }));
else
videoImage.Image = image;
}
}

  

如上代码所述,我单独开了一个线程,用于图像的识别处理和显示,每次都从已捕获到的图像中克隆出新的Bitmap实例进行处理。这种方式的缺点在于,有可能会导致丢帧的现象,因为上面说到了,识别时间(如果检测到新的人脸,那么加上匹配,大约需要130ms左右)大于每帧时间,但是并不影响识别效果和需求的实现,基本丢弃的帧可以忽律。最后,运行,稳定了、完美了,实际也感觉不到丢帧。

Demo程序,我运行了大约4天左右,中间没有出现过任何异常和识别错误。

写在最后
虽然虹软官方表示,免费识别库适用于1000人脸库以下的识别,实际上,做一定的工作(工作量其实也不小),也是可以实现较大规模的人脸搜索滴。例如,采用多线程进行匹配,如果人脸库人脸数量大于1000,则可以考虑每个线程分别进行处理,人脸特征数据做缓存(一个人脸的特征数据是22KB,对内存要求较高),以提升程序的识别搜索效率。或者人脸库特别大的情况下,可以采用分布式处理,人脸特征加载到Redis数据库当中,多个进程多个线程读取处理,每个线程上传自己的识别结果,然后主进程做结果合并判断工作,主要的挑战就在于多线程的工作分配一致性和对单点故障的容错性。

更新:

DEMO中的例子采用了IP Camera,一般情况下,大家可能用USB Camera居多,所以,更新了源代码,增加了USB Camera的例子,只需要屏蔽掉IP Camara代码即可。

task = ffmpeg.ConvertLiveMedia(“video=USB2.0 PC CAMERA”, “dshow”,
outputStream, Format.raw_video, setting);
需要注意的有以下几点:

设备名称可以通过控制面板或者ffmpeg的命令获取:ffmpeg -list_devices true -f dshow -i dummy
注意修改捕获的图像大小,一般USB摄像头是640*480,更新的代码增加了全局变量,可以直接修改。
如果要查询USB摄像头支持的分辨率,也可以通过ffmpeg命令:ffmpeg -list_options true -f dshow -i video=”USB2.0 PC CAMERA”
更新2:

源代码中新增了对 .net core 2.0的支持,因为用到了GDI+相关函数,所以用的是CoreCompat/System.Drawing,所以在部署环境下需要安装libgdiplus, apt-get intall libgdiplus。

另外,有关于视频流的采集,除了使用FFMEPG和一些开源的开发库外,也可以使用厂商的SDK,不过之前试过海康的SDK,那叫一个难用啊,所以大家自己选择吧。

更新3:
虹软SDK更新了新的功能,开发包同步更新,支持年龄和性别的评估

C#实现基于ffmpeg加虹软的人脸识别demo及开发分享的更多相关文章

  1. C#实现基于ffmpeg加虹软的人脸识别

    关于人脸识别 目前的人脸识别已经相对成熟,有各种收费免费的商业方案和开源方案,其中OpenCV很早就支持了人脸识别,在我选择人脸 识别开发库时,也横向对比了三种库,包括在线识别的百度.开源的OpenC ...

  2. C#实现基于ffmepg加虹软的人脸识别

    关于人脸识别 目前的人脸识别已经相对成熟,有各种收费免费的商业方案和开源方案,其中OpenCV很早就支持了人脸识别,在我选择人脸识别开发库时,也横向对比了三种库,包括在线识别的百度.开源的OpenCV ...

  3. 转:基于开源项目OpenCV的人脸识别Demo版整理(不仅可以识别人脸,还可以识别眼睛鼻子嘴等)【模式识别中的翘楚】

    文章来自于:http://blog.renren.com/share/246648717/8171467499 基于开源项目OpenCV的人脸识别Demo版整理(不仅可以识别人脸,还可以识别眼睛鼻子嘴 ...

  4. 【C#】 基于ArcFace 2.0—视频人脸识别Demo

    使用的虹软人脸识别技术 啥话不说,不用跪求,直接给下载地址:http://common.tenzont.com/comdll/arcface2demo.zip(话说附件的大小不限制,还是说我的文件太大 ...

  5. 人脸识别Demo解析C#

    概述 不管你注意到没有,人脸识别已经走进了生活的角角落落,钉钉已经支持人脸打卡,火车站实名认证已经增加了人脸自助验证通道,更别提各个城市建设的『智能城市』和智慧大脑了.在人脸识别业界,通常由人脸识别提 ...

  6. 关于运行“基于极限学习机ELM的人脸识别程序”代码犯下的一些错误

    代码来源 基于极限学习机ELM的人脸识别程序 感谢文章主的分享 我的环境是 win10 anaconda Command line client (version 1.6.5)(conda 4.3.3 ...

  7. opencv基于PCA降维算法的人脸识别

    opencv基于PCA降维算法的人脸识别(att_faces) 一.数据提取与处理 # 导入所需模块 import matplotlib.pyplot as plt import numpy as n ...

  8. 虹软AI 人脸识别SDK接入 — 参数优化篇

    引言 使用了免费的人脸识别算法,感觉还是很不错的,但是初次接触的话会对一些接口的参数有些疑问的.这里分享一下我对一些参数的验证结果(这里以windows版本为例,linux.android基本一样), ...

  9. 人脸识别demo使用教程

    最近在研究虹软家的arcface 人脸识别 demo,现在就给大家分享一下官方的demo**工程如何使用? **1.下载代码:git clone https://github.com/asdfqwra ...

随机推荐

  1. jenkins centos slave起不来报错The SSH key presented by the remote host does not match the key saved in the Known Hosts file against this host. Connections to this host will be denied until the two keys mat

    场景:我的centos-204是一台centos的机器,本来用https://www.cnblogs.com/zndxall/p/8297356.html 的centos slave方式搭建ok的,一 ...

  2. js添加和删除class

    原生主要有三种方法: 1.className var DomClass = document.getElementById("id").className; //删除 pat Do ...

  3. [USACO11DEC]牧草种植Grass Planting

    图很丑.明显的树链剖分,需要的操作只有区间修改和区间查询.不过这里是边权,我们怎么把它转成点权呢?对于E(u,v),我们选其深度大的节点,把边权扔给它.因为这是树,所以每个点只有一个父亲,所以每个边权 ...

  4. namenode No valid image files

    1,角色日志报错 Encountered exception loading fsimage java.io.FileNotFoundException: No valid image files f ...

  5. C# Window Service安装、卸载、恢复选项操作

    using System;using System.Diagnostics;using System.Linq;using System.ServiceProcess; namespace ScmWr ...

  6. 从Redis到Codis移植实践

    一.    背景 随着业务的发展,线上Redis的数据越来越多,所以必须考虑扩容的事情了.对于redis的扩容,目前可选的方案有三种:1.client自己做sharding,一般是按key的hash值 ...

  7. Spring Boot默认的JSON解析框架设置

    方案一:启动类继承WebMvcConfigurerAdapter,覆盖方法configureMessageConverters ... @SpringBootApplication public cl ...

  8. IO流(一)

    一.异常 概述 异常就是Java程序在运行过程中出现的错误. 由来 问题也是现实生活中一个具体事务,也可以通过java的类的形式进行描述,并封装成对象.其实就是Java对不正常情况进行描述后的对象体现 ...

  9. 【转载】Sikuli安装及使用——基于图像识别自动化工具

    一.Sikuli能做什么? 用屏幕截图的方式,用截出来的图形元素组合出神奇的程序实现自动化安装.卸载软件,自动化测试(Windows.mac应用测试,Web测试,移动端测试) 二.安装Sikuli 预 ...

  10. spring源码解析2--容器的基本实现

    spring的主要特性是IOC,实现IOC的关键是bean,而更关键的是如何bean的管理容器,也就是BeanFactory,本文的目标是弄清楚BeanFactory具体是怎么样的存在. 先看下最简单 ...