LGP4714题解
没意思啊
题意:求 \(1^{k+2}(n)\),其中规定 \(1^k\) 在 \(k=1\) 时为 \(1\),在 \(2 \leq k\) 时为 \(1 * 1^{k-1}\)(* 为狄利克雷卷积,\(1(n)=1\))。
给一个积性函数,然后求其值,先将其分解质因数,在质数幂处分别求值,最后乘起来。
所以问题变成了求 \(1^k(p^K)\)。
设多项式 \(F_p^k(x)=\sum_{i=0}^{\infty}1^k(p^K)x^i\)
很明显对于所有 \(p\),当 \(k\) 相同时,\(F_p^k\) 是相等的。
而在这个意义下,求 \(f(p^K)\)就变成了求 \([x^K](F_p^1(x))^k\)。
很明显 \(F_p^1(x)=\sum_{i=0}^{\infty}x^i\),所以 \(f(p^K)\) 实际上就是对多项式 \(1\) 做 \(k+2\) 遍前缀和。
然后根据P5488,我们能够得到 \(f(p^K)=\binom K {K+k}=\frac {\prod_{i=1}^K(k+i)} {K!}\)。
然后就是分解质因子了,因为懒得写 PR 所以看了题解,把常用的三个质数特判了一下(
#include<cstdio>
const int M=1e6+5,mod=998244353;
int k,ans=1,top,inv[75],pri[M];bool zhi[M];
long long x,n;
inline int Add(const int&a,const int&b){
return a+b>=mod?a+b-mod:a+b;
}
inline int Del(const int&a,const int&b){
return b>a?a-b+mod:a-b;
}
inline void sieve(const int&M){
register int i,j,x;
for(i=2;i<=M;++i){
if(!zhi[i])pri[++top]=i;
for(j=1;(x=i*pri[j])<=M;++j){
zhi[i]=true;
if(!(i%pri[j]))break;
}
}
pri[++top]=mod;pri[++top]=1e9+7;pri[++top]=1e9+9;
}
inline int calc(const int&n){
register int i,ans=1;
for(i=1;i<=n;++i)ans=1ll*ans*inv[i]%mod*Del(Add(n+2,k),i)%mod;
return ans;
}
signed main(){
register int i,cnt;
scanf("%lld%lld",&n,&x);k=x%mod;
sieve(1e6);inv[1]=1;
for(i=2;i<=70;++i)inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;
for(i=1;i<=top&&1ll*pri[i]*pri[i]<=n;++i){
if(n%pri[i])continue;cnt=0;
while(!(n%pri[i]))n/=pri[i],++cnt;
ans=1ll*ans*calc(cnt)%mod;
}
if(n>1)ans=1ll*ans*calc(1)%mod;
printf("%d",ans);
}
LGP4714题解的更多相关文章
- 2016 华南师大ACM校赛 SCNUCPC 非官方题解
我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...
- noip2016十连测题解
以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...
- BZOJ-2561-最小生成树 题解(最小割)
2561: 最小生成树(题解) Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1628 Solved: 786 传送门:http://www.lyd ...
- Codeforces Round #353 (Div. 2) ABCDE 题解 python
Problems # Name A Infinite Sequence standard input/output 1 s, 256 MB x3509 B Restoring P ...
- 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解
题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...
- 2016ACM青岛区域赛题解
A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Jav ...
- poj1399 hoj1037 Direct Visibility 题解 (宽搜)
http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...
- 网络流n题 题解
学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...
- CF100965C题解..
求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...
随机推荐
- element-ui 使用 Select 组件给 value 属性绑定对象类型
qq_36437172 2020-06-28 22:38:49 778 收藏 分类专栏: element-ui 文章标签: element-ui Select 组件 value 属性 绑定 对象类 ...
- Android中四大组件
Activity BroadCast Receiver 广播接收者 Service 服务 Content Provider 内容提供者 四大组件都需要在清单文件里面配置一下
- MySQL高质量博文链接集合
1. 『浅入浅出』MySQL 和 InnoDB https://draveness.me/mysql-innodb.html
- iOS,开发准备之申请证书 ---by吴帮雷
一.申请真机调试证书 打开iOS Dev Center,选择Sign in,登陆(至少99美元账号),登陆选择Certificates,Identifiers & Profiles --> ...
- nvidia-smi
内容转自:https://blog.csdn.net/handsome_bear/article/details/80903477 nvidia-smi 显示 说明 Fan 风扇转速(0%--100% ...
- nodejs并行无关联
var async = require('async'); //串行无关联series//串行有关联waterfall//并行:parallel //会把各个函数的执行结果一起放到最后的回调中asyn ...
- 阅读mybatis的源码的思路
■ 阅读源码mybatis操作数据库的过程: /* 测试查询 */ @Test public void testGet() throws IOException { // 1.从classpath路径 ...
- kubernetes之数据管理
volume emptyDir [machangwei@mcwk8s-master ~]$ kubectl apply -f mcwVolume1.yml #部署emptydir pod/produc ...
- 定制Centos7.9镜像
Ps:因为工作内容:有一部份是需要重装系统:系统版本镜像为centos7.9.可每次装完都需要下载一些基础包:最近因为设备过多:网卡名称太乱:导致做后续配置太繁琐:不规整:索性自己定制个系统: 搭建基 ...
- netty系列之:channel,ServerChannel和netty中的实现
目录 简介 channel和ServerChannel netty中channel的实现 AbstractChannel和AbstractServerChannel LocalChannel和Loca ...