没意思啊

题意:求 \(1^{k+2}(n)\),其中规定 \(1^k\) 在 \(k=1\) 时为 \(1\),在 \(2 \leq k\) 时为 \(1 * 1^{k-1}\)(* 为狄利克雷卷积,\(1(n)=1\))。

给一个积性函数,然后求其值,先将其分解质因数,在质数幂处分别求值,最后乘起来。

所以问题变成了求 \(1^k(p^K)\)。

设多项式 \(F_p^k(x)=\sum_{i=0}^{\infty}1^k(p^K)x^i\)

很明显对于所有 \(p\),当 \(k\) 相同时,\(F_p^k\) 是相等的。

而在这个意义下,求 \(f(p^K)\)就变成了求 \([x^K](F_p^1(x))^k\)。

很明显 \(F_p^1(x)=\sum_{i=0}^{\infty}x^i\),所以 \(f(p^K)\) 实际上就是对多项式 \(1\) 做 \(k+2\) 遍前缀和。

然后根据P5488,我们能够得到 \(f(p^K)=\binom K {K+k}=\frac {\prod_{i=1}^K(k+i)} {K!}\)。

然后就是分解质因子了,因为懒得写 PR 所以看了题解,把常用的三个质数特判了一下(

#include<cstdio>
const int M=1e6+5,mod=998244353;
int k,ans=1,top,inv[75],pri[M];bool zhi[M];
long long x,n;
inline int Add(const int&a,const int&b){
return a+b>=mod?a+b-mod:a+b;
}
inline int Del(const int&a,const int&b){
return b>a?a-b+mod:a-b;
}
inline void sieve(const int&M){
register int i,j,x;
for(i=2;i<=M;++i){
if(!zhi[i])pri[++top]=i;
for(j=1;(x=i*pri[j])<=M;++j){
zhi[i]=true;
if(!(i%pri[j]))break;
}
}
pri[++top]=mod;pri[++top]=1e9+7;pri[++top]=1e9+9;
}
inline int calc(const int&n){
register int i,ans=1;
for(i=1;i<=n;++i)ans=1ll*ans*inv[i]%mod*Del(Add(n+2,k),i)%mod;
return ans;
}
signed main(){
register int i,cnt;
scanf("%lld%lld",&n,&x);k=x%mod;
sieve(1e6);inv[1]=1;
for(i=2;i<=70;++i)inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;
for(i=1;i<=top&&1ll*pri[i]*pri[i]<=n;++i){
if(n%pri[i])continue;cnt=0;
while(!(n%pri[i]))n/=pri[i],++cnt;
ans=1ll*ans*calc(cnt)%mod;
}
if(n>1)ans=1ll*ans*calc(1)%mod;
printf("%d",ans);
}

LGP4714题解的更多相关文章

  1. 2016 华南师大ACM校赛 SCNUCPC 非官方题解

    我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...

  2. noip2016十连测题解

    以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...

  3. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  4. Codeforces Round #353 (Div. 2) ABCDE 题解 python

    Problems     # Name     A Infinite Sequence standard input/output 1 s, 256 MB    x3509 B Restoring P ...

  5. 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解

    题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...

  6. 2016ACM青岛区域赛题解

    A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Jav ...

  7. poj1399 hoj1037 Direct Visibility 题解 (宽搜)

    http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...

  8. 网络流n题 题解

    学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...

  9. CF100965C题解..

    求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...

随机推荐

  1. 使用kubeadm快速部署一套K8S集群

    一.Kubernetes概述 1.1 Kubernetes是什么 Kubernetes是Google在2014年开源的一个容器集群管理系统,Kubernetes简称K8S. K8S用于容器化应用程序的 ...

  2. 通过bindservice方式调用服务方法里面的过程

    为什么要引入bindService:目的为了调用服务里面的方法 (1)定义一个服务 服务里面有一个方法需要Activity调用 (2)定义一个中间人对象(IBinder) 继承Binder (3)在o ...

  3. vagrant的box哪里下?镜像在哪儿找?教你在vagrant官网下载各种最新.box资源

    原文:vagrant的box哪里下?镜像在哪儿找?教你在vagrant官网下载各种最新.box资源 一.进入vagrant官网 https://www.vagrantup.com/ 二.点击findb ...

  4. Shell for&while中的循环

    #!/usr/bin/ksh #数字段形式 for i in {1..10} do echo $i done #详细列出(字符且项数不多) for File in 1 2 3 4 5 do echo ...

  5. LVS+Keepalived群集

    LVS+Keepalived群集 目录 LVS+Keepalived群集 一.Keepalived实现原理 1. 单服务器的风险 2. Keepalived工具 3. Keepalived解决单点故障 ...

  6. Linux Ubuntu安装Nvidia多GPU通信库NCCL

    0. 前言 在使用Python版本的PaddleDetection进行一些实验时,想同时利用多个GPU提高效率,遇到了一点问题 You may need to install 'nccl2' from ...

  7. 将自己的web应用发布到Tomcat

    方法一:(用这个方法最好先把ROOT文件夹备份好,不建议使用) 1,打开tomcat 的目录,在webapps 的目录下, 把命名为ROOT 的文件夹删掉, 然后把自己的war 包更名为 ROOT.w ...

  8. 重新认识Appium

    一.重新认识Appium   找到了学习资料,却不知道怎么实现!!! 要如何实现呢? Appium完整案例值得参考:手把手搭建环境,其中安装和配置Mave这部分有点老了. 首先下载maven 官网地址 ...

  9. Apache虚拟主机的搭建及相关问题解决

    在开发的过程中,很多时候项目的部署都需要在本地进行虚拟服务器的模拟搭建,所以具体的配置流程为下,并且把自己遇到的问题跟大家分享. 1.Apache配置文件httpd.conf 找到   # Virtu ...

  10. NTFS格式下的Alternate Data Streams

    今天我写点NTFS的交换数据流以及其带来的安全问题(Alternate Data Stream/ADS) =============================================== ...