算是刷新了我对树上问题的认知

首先第一问随便做一个 \(O(nk)\) 的 DP 就可以草过去,考虑第二问。

我们将问题分为两个部分:走儿子边的答案和走父亲边的答案。最后拼接一下就好了。

设 \(fd[u][k]\) 是走儿子边且距离不超过 \(k\) 的节点数量,\(fu[u][k]\) 是走父亲边的答案;\(gd[u][k]\) 是走儿子边的拥挤程度,\(gu[u][k]\) 同理。

这几个转移起来相当简单,不再赘述。可以做到 \(O(nk\log n)\) 或 \(O(n(k+\log n))\)。

#include<cstdio>
typedef unsigned ui;
const ui M=1e5+5,K=15,mod=1e9+7;
ui n,k,cnt,h[M],f[M],ans[M],fd[M][K],fu[M][K],gd[M][K],gu[M][K];
struct Edge{
ui v,nx;
}e[M<<1];
inline void Add(const ui&u,const ui&v){
e[++cnt]=(Edge){v,h[u]};h[u]=cnt;
e[++cnt]=(Edge){u,h[v]};h[v]=cnt;
}
inline void swap(ui&a,ui&b){
ui c=a;a=b;b=c;
}
inline ui pow(ui a,ui b){
ui ans(1);for(;b;b>>=1,a=1ull*a*a%mod)if(b&1)ans=1ull*ans*a%mod;return ans;
}
inline void init(const ui&u){
for(ui v,E=h[u];E;E=e[E].nx)if((v=e[E].v)^f[u])f[v]=u,init(v);
}
inline void DFS1(const ui&u){
for(ui i=0;i<=k;++i)fd[u][i]=gd[u][i]=1;
for(ui v,E=h[u];E;E=e[E].nx)if((v=e[E].v)^f[u]){
DFS1(v);
for(ui i=1;i<=k;++i){
fd[u][i]+=fd[v][i-1];gd[u][i]=1ull*gd[u][i]*gd[v][i-1]%mod;
}
}
for(ui i=0;i<=k;++i)gd[u][i]=1ull*gd[u][i]*fd[u][i]%mod;
}
inline void DFS2(const ui&u){
static ui t[K],inv[K];inv[1]=1;
for(ui i=0;i<=k;++i)fu[u][i]=gu[u][i]=1;
if(u!=1){
++fu[u][1];
gu[u][1]=1ull*gu[f[u]][0]*gd[f[u]][0]%mod*fu[u][1]%mod;
for(ui i=2;i<=k;++i){
const ui&sz1=fu[f[u]][i-1],&sz2=fd[f[u]][i-1],&sz3=fd[u][i-2];
fu[u][i]=sz1+sz2-sz3;
gu[u][i]=1ull*gu[f[u]][i-1]*gd[f[u]][i-1]%mod*(fu[u][i]-1)%mod*fu[u][i]%mod;
t[i]=1ull*gd[u][i-2]*sz1%mod*sz2%mod;
inv[i]=1ull*inv[i-1]*t[i]%mod;
}
inv[k]=pow(inv[k],mod-2);
for(ui i=k;i>1;--i)swap(inv[i],inv[i-1]),inv[i]=1ull*inv[i]*inv[i-1]%mod,inv[i-1]=1ull*inv[i-1]*t[i]%mod;
for(ui i=2;i<=k;++i)gu[u][i]=1ull*gu[u][i]*inv[i]%mod;
}
for(ui v,E=h[u];E;E=e[E].nx)if((v=e[E].v)^f[u])DFS2(v);
}
signed main(){
scanf("%u%u",&n,&k);
for(ui i=1;i<n;++i){
ui u,v;scanf("%u%u",&u,&v);
Add(u,v);
}
init(1);DFS1(1);DFS2(1);
for(ui u=1;u<=n;++u){
const ui&sz1=fd[u][k],sz2=fu[u][k];
ans[u]=1ull*gd[u][k]*gu[u][k]%mod*pow(1ull*sz1*sz2%mod,mod-2)%mod*(sz1+sz2-1)%mod;
printf("%u ",sz1+sz2-1);
}
printf("\n");
for(ui u=1;u<=n;++u)printf("%u ",ans[u]);
}

BSOJ6387题解的更多相关文章

  1. 2016 华南师大ACM校赛 SCNUCPC 非官方题解

    我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...

  2. noip2016十连测题解

    以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...

  3. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  4. Codeforces Round #353 (Div. 2) ABCDE 题解 python

    Problems     # Name     A Infinite Sequence standard input/output 1 s, 256 MB    x3509 B Restoring P ...

  5. 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解

    题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...

  6. 2016ACM青岛区域赛题解

    A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Jav ...

  7. poj1399 hoj1037 Direct Visibility 题解 (宽搜)

    http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...

  8. 网络流n题 题解

    学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...

  9. CF100965C题解..

    求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...

随机推荐

  1. 编译PHP扩展的方式

    编译的两种方式其实很简单,这里记录只是为了以后遇到这种情况时不加思索地运用上,而不是花费一些时间去回忆. C/C++程序编译有两种方式:动态编译.静态编译.PHP 是使用 C/C++程序开发的一门脚本 ...

  2. ARC下的内存管理

    1.ARC下单对象内存管理 局部变量释放对象随之被释放 int main(int argc, const char * argv[]) { @autoreleasepool { Person *p = ...

  3. MATLAB基础学习(3)——数值数组及运算

    rand('state',s)表示随机产生数的状bai态state,一般情百况du下不用指定状态.rand('state',0)作用在于如果指容定zhi状态,产生dao随机结果就相同了.一般情况下不用 ...

  4. mysql悬案 之 为什么用docker启动的mysql配置文件不生效

    文章目录 故事前景 查看docker启动时挂载了哪些目录 使用相同镜像启动一个mysql 新建一个目录用来存放容器内的mysql配置文件 复制容器内的mysql配置文件到本地 查看mysql配置文件目 ...

  5. RadonDB MySQL on K8s 2.1.2 发布!

    RadonDB MySQL on Kubernetes 于 2 月 17 日发布了新版本 2.1.2 .该版本在节点的重建.增删等方面进行了全面升级. 致谢: 首先感谢 @andyli029 @ace ...

  6. mysql 事务 隔离性 锁

    1.四大特性 1.1 原子性(Atomicity) 一个事务是不可分割的最小工作单位.一个事务是不可分割的最小工作单位. 利用undo log保证原子性,undo log记录的是操作的反向语句,例如执 ...

  7. Linux安装ms-office

    https://ittutorials.net/open-source/linux/installing-microsoft-office-in-ubuntu/

  8. 【C# 线程】 volatile 关键字和Volatile类、Thread.VolatileRead|Thread.VolatileWrite 详细 完整

    overview 同步基元分为用户模式和内核模式 用户模式:Iterlocked.Exchange(互锁).SpinLocked(自旋锁).易变构造(volatile关键字.volatile类.Thr ...

  9. 【C#表达式树 七】 反射在表达式树中的应用 ListInitExpression

    以下都是反射在表达式树中的应用 对象初始化 Expression.MemberInit 反射获取成员(字段 或者属性),绑定数据,然后生成 成员表达式节点 class Animal { public ...

  10. C# 逆变(Contravariance)/协变(Covariance) - 个人的理解

    逆变(Contravariance)/协变(Covariance) 1. 基本概念 官方: 协变和逆变都是术语,前者指能够使用比原始指定的派生类型的派生程度更大(更具体的)的类型,后者指能够使用比原始 ...