BSOJ6387题解
算是刷新了我对树上问题的认知
首先第一问随便做一个 \(O(nk)\) 的 DP 就可以草过去,考虑第二问。
我们将问题分为两个部分:走儿子边的答案和走父亲边的答案。最后拼接一下就好了。
设 \(fd[u][k]\) 是走儿子边且距离不超过 \(k\) 的节点数量,\(fu[u][k]\) 是走父亲边的答案;\(gd[u][k]\) 是走儿子边的拥挤程度,\(gu[u][k]\) 同理。
这几个转移起来相当简单,不再赘述。可以做到 \(O(nk\log n)\) 或 \(O(n(k+\log n))\)。
#include<cstdio>
typedef unsigned ui;
const ui M=1e5+5,K=15,mod=1e9+7;
ui n,k,cnt,h[M],f[M],ans[M],fd[M][K],fu[M][K],gd[M][K],gu[M][K];
struct Edge{
ui v,nx;
}e[M<<1];
inline void Add(const ui&u,const ui&v){
e[++cnt]=(Edge){v,h[u]};h[u]=cnt;
e[++cnt]=(Edge){u,h[v]};h[v]=cnt;
}
inline void swap(ui&a,ui&b){
ui c=a;a=b;b=c;
}
inline ui pow(ui a,ui b){
ui ans(1);for(;b;b>>=1,a=1ull*a*a%mod)if(b&1)ans=1ull*ans*a%mod;return ans;
}
inline void init(const ui&u){
for(ui v,E=h[u];E;E=e[E].nx)if((v=e[E].v)^f[u])f[v]=u,init(v);
}
inline void DFS1(const ui&u){
for(ui i=0;i<=k;++i)fd[u][i]=gd[u][i]=1;
for(ui v,E=h[u];E;E=e[E].nx)if((v=e[E].v)^f[u]){
DFS1(v);
for(ui i=1;i<=k;++i){
fd[u][i]+=fd[v][i-1];gd[u][i]=1ull*gd[u][i]*gd[v][i-1]%mod;
}
}
for(ui i=0;i<=k;++i)gd[u][i]=1ull*gd[u][i]*fd[u][i]%mod;
}
inline void DFS2(const ui&u){
static ui t[K],inv[K];inv[1]=1;
for(ui i=0;i<=k;++i)fu[u][i]=gu[u][i]=1;
if(u!=1){
++fu[u][1];
gu[u][1]=1ull*gu[f[u]][0]*gd[f[u]][0]%mod*fu[u][1]%mod;
for(ui i=2;i<=k;++i){
const ui&sz1=fu[f[u]][i-1],&sz2=fd[f[u]][i-1],&sz3=fd[u][i-2];
fu[u][i]=sz1+sz2-sz3;
gu[u][i]=1ull*gu[f[u]][i-1]*gd[f[u]][i-1]%mod*(fu[u][i]-1)%mod*fu[u][i]%mod;
t[i]=1ull*gd[u][i-2]*sz1%mod*sz2%mod;
inv[i]=1ull*inv[i-1]*t[i]%mod;
}
inv[k]=pow(inv[k],mod-2);
for(ui i=k;i>1;--i)swap(inv[i],inv[i-1]),inv[i]=1ull*inv[i]*inv[i-1]%mod,inv[i-1]=1ull*inv[i-1]*t[i]%mod;
for(ui i=2;i<=k;++i)gu[u][i]=1ull*gu[u][i]*inv[i]%mod;
}
for(ui v,E=h[u];E;E=e[E].nx)if((v=e[E].v)^f[u])DFS2(v);
}
signed main(){
scanf("%u%u",&n,&k);
for(ui i=1;i<n;++i){
ui u,v;scanf("%u%u",&u,&v);
Add(u,v);
}
init(1);DFS1(1);DFS2(1);
for(ui u=1;u<=n;++u){
const ui&sz1=fd[u][k],sz2=fu[u][k];
ans[u]=1ull*gd[u][k]*gu[u][k]%mod*pow(1ull*sz1*sz2%mod,mod-2)%mod*(sz1+sz2-1)%mod;
printf("%u ",sz1+sz2-1);
}
printf("\n");
for(ui u=1;u<=n;++u)printf("%u ",ans[u]);
}
BSOJ6387题解的更多相关文章
- 2016 华南师大ACM校赛 SCNUCPC 非官方题解
我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...
- noip2016十连测题解
以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...
- BZOJ-2561-最小生成树 题解(最小割)
2561: 最小生成树(题解) Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1628 Solved: 786 传送门:http://www.lyd ...
- Codeforces Round #353 (Div. 2) ABCDE 题解 python
Problems # Name A Infinite Sequence standard input/output 1 s, 256 MB x3509 B Restoring P ...
- 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解
题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...
- 2016ACM青岛区域赛题解
A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Jav ...
- poj1399 hoj1037 Direct Visibility 题解 (宽搜)
http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...
- 网络流n题 题解
学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...
- CF100965C题解..
求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...
随机推荐
- centos7 安装yum源
centos7的服务器,没有yum,没有wget命令真的寸步难行,经过总结和查询,现在算搞定了,把经验总结一下,以免大家再浪费时间去找原因: 安装yum需要wget安装yum的rpm包,所以前提是先有 ...
- Java程序性能监控工具
系统性能监控: 确定系统运行的整体状态,基本定位问题所在 uptime命令 [root@localhost ~]# uptime23:19:38 up 244 days, 3:39, 34 users ...
- python基础——反射
反射:利用字符串的形式去对象(模块)中操作(寻找|检查|设置|删除)成员 getattr(commons,"login") #在commons模块中找成员login hasattr ...
- day3 -- 集合、文件操作、函数
1.集合:集合无序,不重复,可以用set(列表) 方法将列表转换为集合,实现去重 对比列表:集合是{}包围,列表是[]包围 对比字典:集合是没有key的,字典是有key的 set_1 = {1, 2, ...
- Python实现不带头结点的单链表
1 # 创建一个节点类 2 class Node: 3 def __init__(self, item): 4 self.item = item 5 self.next = None 6 7 8 # ...
- Puppeteer简介
puppeteer常用API https://github.com/GoogleChrome/puppeteer/blob/master/docs/api.md Puppeteer是一个node库,他 ...
- javascript 书
作者limu 整理的书 http://web.jobbole.com/8087/ 慢慢整理, 后续还会添加
- Solution -「LOJ #6053」简单的函数
\(\mathcal{Description}\) Link. 积性函数 \(f\) 满足 \(f(p^c)=p\oplus c~(p\in\mathbb P,c\in\mathbb N_+) ...
- Solution -「CF 1392G」Omkar and Pies
\(\mathcal{Description}\) Link. 给定两个长度为 \(K\) 的 \(01\) 串 \(S,T\) 和 \(n\) 组操作 \((a_i,b_i)\),意义为交换 ...
- 打造一款属于自己的CentOS操作系统
文章目录 声明 关闭selinux以及firewalld 修改终端前缀显示 修改默认网卡名称为eth0 替换yum源 安装常用工具 优化history 配置回收站 迎宾显示 优化vim 清空yum缓存 ...