算是刷新了我对树上问题的认知

首先第一问随便做一个 \(O(nk)\) 的 DP 就可以草过去,考虑第二问。

我们将问题分为两个部分:走儿子边的答案和走父亲边的答案。最后拼接一下就好了。

设 \(fd[u][k]\) 是走儿子边且距离不超过 \(k\) 的节点数量,\(fu[u][k]\) 是走父亲边的答案;\(gd[u][k]\) 是走儿子边的拥挤程度,\(gu[u][k]\) 同理。

这几个转移起来相当简单,不再赘述。可以做到 \(O(nk\log n)\) 或 \(O(n(k+\log n))\)。

#include<cstdio>
typedef unsigned ui;
const ui M=1e5+5,K=15,mod=1e9+7;
ui n,k,cnt,h[M],f[M],ans[M],fd[M][K],fu[M][K],gd[M][K],gu[M][K];
struct Edge{
ui v,nx;
}e[M<<1];
inline void Add(const ui&u,const ui&v){
e[++cnt]=(Edge){v,h[u]};h[u]=cnt;
e[++cnt]=(Edge){u,h[v]};h[v]=cnt;
}
inline void swap(ui&a,ui&b){
ui c=a;a=b;b=c;
}
inline ui pow(ui a,ui b){
ui ans(1);for(;b;b>>=1,a=1ull*a*a%mod)if(b&1)ans=1ull*ans*a%mod;return ans;
}
inline void init(const ui&u){
for(ui v,E=h[u];E;E=e[E].nx)if((v=e[E].v)^f[u])f[v]=u,init(v);
}
inline void DFS1(const ui&u){
for(ui i=0;i<=k;++i)fd[u][i]=gd[u][i]=1;
for(ui v,E=h[u];E;E=e[E].nx)if((v=e[E].v)^f[u]){
DFS1(v);
for(ui i=1;i<=k;++i){
fd[u][i]+=fd[v][i-1];gd[u][i]=1ull*gd[u][i]*gd[v][i-1]%mod;
}
}
for(ui i=0;i<=k;++i)gd[u][i]=1ull*gd[u][i]*fd[u][i]%mod;
}
inline void DFS2(const ui&u){
static ui t[K],inv[K];inv[1]=1;
for(ui i=0;i<=k;++i)fu[u][i]=gu[u][i]=1;
if(u!=1){
++fu[u][1];
gu[u][1]=1ull*gu[f[u]][0]*gd[f[u]][0]%mod*fu[u][1]%mod;
for(ui i=2;i<=k;++i){
const ui&sz1=fu[f[u]][i-1],&sz2=fd[f[u]][i-1],&sz3=fd[u][i-2];
fu[u][i]=sz1+sz2-sz3;
gu[u][i]=1ull*gu[f[u]][i-1]*gd[f[u]][i-1]%mod*(fu[u][i]-1)%mod*fu[u][i]%mod;
t[i]=1ull*gd[u][i-2]*sz1%mod*sz2%mod;
inv[i]=1ull*inv[i-1]*t[i]%mod;
}
inv[k]=pow(inv[k],mod-2);
for(ui i=k;i>1;--i)swap(inv[i],inv[i-1]),inv[i]=1ull*inv[i]*inv[i-1]%mod,inv[i-1]=1ull*inv[i-1]*t[i]%mod;
for(ui i=2;i<=k;++i)gu[u][i]=1ull*gu[u][i]*inv[i]%mod;
}
for(ui v,E=h[u];E;E=e[E].nx)if((v=e[E].v)^f[u])DFS2(v);
}
signed main(){
scanf("%u%u",&n,&k);
for(ui i=1;i<n;++i){
ui u,v;scanf("%u%u",&u,&v);
Add(u,v);
}
init(1);DFS1(1);DFS2(1);
for(ui u=1;u<=n;++u){
const ui&sz1=fd[u][k],sz2=fu[u][k];
ans[u]=1ull*gd[u][k]*gu[u][k]%mod*pow(1ull*sz1*sz2%mod,mod-2)%mod*(sz1+sz2-1)%mod;
printf("%u ",sz1+sz2-1);
}
printf("\n");
for(ui u=1;u<=n;++u)printf("%u ",ans[u]);
}

BSOJ6387题解的更多相关文章

  1. 2016 华南师大ACM校赛 SCNUCPC 非官方题解

    我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...

  2. noip2016十连测题解

    以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...

  3. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  4. Codeforces Round #353 (Div. 2) ABCDE 题解 python

    Problems     # Name     A Infinite Sequence standard input/output 1 s, 256 MB    x3509 B Restoring P ...

  5. 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解

    题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...

  6. 2016ACM青岛区域赛题解

    A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Jav ...

  7. poj1399 hoj1037 Direct Visibility 题解 (宽搜)

    http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...

  8. 网络流n题 题解

    学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...

  9. CF100965C题解..

    求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...

随机推荐

  1. 入门 - k8s伸缩应用程序 (六)

    目标 使用 kubectl 伸缩应用程序. Scaling(伸缩)应用程序 在之前的文章中,我们创建了一个 Deployment,然后通过 服务 提供访问 Pod 的方式.我们发布的 Deployme ...

  2. html路径

    一.HTML 相对路径和绝对路径区别分析 HTML初学者会经常遇到这样一个问题,如何正确引用一个文件.比如,怎样在一个HTML网页中引用另外一个HTML网页作为超链接(hyperlink)?怎样在一个 ...

  3. express源码分析之Router

    express作为nodejs平台下非常流行的web框架,相信大家都对其已经很熟悉了,对于express的使用这里不再多说,如有需要可以移步到www.expressjs.com自行查看express的 ...

  4. 自定义带图片和文字的Button的排版--陈棚

    自定义button,动态加载图片与文字 [footView addSubview:btnAllChoose]; [btnAllChoose setTitle:str forState:UIContro ...

  5. 微信小程序音频播放 InnerAudioContext 的用法

    今天项目上涉及到了微信小程序播放音频功能,所以今天跟着一些教程做了个简单的播放器 1.实现思路 刚开始想着有没有现成的组件可以直接用,找到了微信的媒体组件 audio,奈何看着 1.6.0版本开始,该 ...

  6. 【BZOJ5492】校园旅行(图论 搜索优化)

    题目链接 大意 给出\(N\)个点,\(M\)条边的一张图,其中每个点都有一个0或1的颜色. 再给出\(Q\)个询问,每次询问查询两个点之间是否存在一条路径,使得路径上的颜色组成的01字符串是一个回文 ...

  7. requests实现接口测试

    python+requests实现接口测试 - get与post请求基本使用方法 http://www.cnblogs.com/nizhihong/p/6567928.html   Requests ...

  8. 大地坐标BLH转平面坐标xyh(高斯投影坐标正算) Java版

    技术背景 做过位置数据处理的小伙伴基本上都会遇到坐标转换,而基于高斯投影原理的大地坐标转平面坐标就是其中一种坐标转换,坐标转换的目的就是方便后面数据的处理工作,大地坐标转高斯平面坐标常用的有两种,即3 ...

  9. PHP+mysql真题

    PHP+mysql真题 来自<PHP程序员面试笔试宝典>,涵盖了近三年了各大型企业常考的PHP面试题,针对面试题提取出来各种面试知识也涵盖在了本书. [真题215] 按要求写出SQL实现. ...

  10. My97DatePicker接口

    复制于http://blog.csdn.net/lidew521/article/details/8531685 一. 简介 1. 简介 目前的版本是:4.2 正式版 发布于2008-12-03 2. ...