Fast-Rcnn学习笔记

Fast-RCNN总览



step1:图片先放进卷积层
step2:再卷积层的特征图谱上回映射出对应的感兴趣区域
step3:集过一层ROI Pooling(后面介绍)
step4:每一个ROI变成一维的向量送入两个全连接层
step5:在最后的全连接层再分别将向量送入到分类框/回归框

Fast-RCNN与SPPNet的比较

  • Fast-Rcnn在SPPNet上再进行改进
  • SPP-net上的不足之处
    1. 训练比较慢(25h),需要许多磁盘空间
    2. 再训练时不能更新SPP层下的参数
  • Fast R-CNN有点
    1. 测试是更快
    2. 一步训练
    3. 更高的map
  • Fast R-CNN的ROI跟sPPNet类似但是又不太一样
    • Fast R-CNN是用固定大小的H*W的框(H,W是需要设置的超参数)
    • 假设从特征图谱出来的特征图大小为(hw),则每一个小格的大小为(h/Hw/W)
    • 然后从每个小的格子中max-pooling,在每个特征图的通道中最大池化都是独立的

在测试时和训练时的过程

  • 测试时

  • 训练时

关于在分类器和回归器中的详解

在分类器

  • 说明
step1:这里包括N+1个类别(包括1个背景类)
step2:对这一个类别使用softmax进行打分(总和为1)
step3:从这N+1中选择一个分最大的,则该ROI属于的类别为该类

在回归器

  • 说明
step1:每一个类别对应4个参数(后面介绍dx,dy,dw,dh这四个参数)
step2:同理选出属于该类的dx,dy,dw,dh
  • 详解边界框回归器

  • 说明
step1:绿色的G是Ground Truth,黄色框P是预选框,红色框是最终预测的边界框
step2:dx(P) = (Gx-px)/Pw。同理可以求得dy(p),dw(p),dh(p)
step3:将求得的带入上面的公式中即可求得最终的预测框

关于Fast-RCnn中的Multi-task loss

分类损失

  • 因为是属于分类任务,所以使用Cross Entropy loss
  • 关于Cross Entropy

  • 本文对应的是多分类任务
step1:假设真实标签的one-hot编码是:[0,0,...,1,...,0]
step2:预测的softmax概率为[0.1,0.3,...,0.4,...,0.1]
step3:那么Loss=-log(0.4)

边界框回归损失

  • 说明
针对[u>=1]艾弗森括号:如果是背景类别则该项为0,即:背景不用边界框回归
  • 总上所述:fast-rcnn除了没用将selective search融为一体,将Feature extraction,classification,bounding-box regression都融为一体了
  • 后面提出的Faster-RCNN将解决这一问题

Fast-Rcnn学习笔记的更多相关文章

  1. R-CNN学习笔记

    R-CNN学习笔记 step1:总览 步骤: 输入图片 先挑选大约2000个感兴趣区域(ROI)使用select search方法:[在输入的图像中寻找blobby regions(可能相同纹理,颜色 ...

  2. Fast RCNN 学习

    因为项目需要,之前没有接触过深度学习的东西,现在需要学习Fast RCNN这个方法. 一步步来,先跟着做,然后再学习理论 Fast RCNN 训练自己数据集 (1编译配置) Fast RCNN 训练自 ...

  3. 【CV论文阅读】 Fast RCNN + SGD笔记

    Fast RCNN的结构: 先从这幅图解释FAST RCNN的结构.首先,FAST RCNN的输入是包含两部分,image以及region proposal(在论文中叫做region of inter ...

  4. Faster RCNN学习笔记

    感谢知乎大神的分享 https://zhuanlan.zhihu.com/p/31426458 Ross B. Girshick在2016年提出了新的Faster RCNN,在结构上,Faster R ...

  5. Fast R-CNN学习总结

    Fast R-CNN是R-CNN的改良版,同时也吸取了SPP-net中的方法.在此做一下总结. 论文中讲到在训练阶段,训练一个深度目标检测网络(VGG16),训练速度要比R-CNN快9倍左右,比SPP ...

  6. Faster RCNN 学习笔记

    下面的介绍都是基于VGG16 的Faster RCNN网络,各网络的差异在于Conv layers层提取特征时有细微差异,至于后续的RPN层.Pooling层及全连接的分类和目标定位基本相同. 一). ...

  7. Mask RCNN 学习笔记

    下面会介绍基于ResNet50的Mask RCNN网络,其中会涉及到RPN.FPN.ROIAlign以及分类.回归使用的损失函数等 介绍时所采用的MaskRCNN源码(python版本)来源于GitH ...

  8. 目标检测(三)Fast R-CNN

    作者:Ross Girshick 该论文提出的目标检测算法Fast Region-based Convolutional Network(Fast R-CNN)能够single-stage训练,并且可 ...

  9. 深度学习论文笔记:Fast R-CNN

    知识点 mAP:detection quality. Abstract 本文提出一种基于快速区域的卷积网络方法(快速R-CNN)用于对象检测. 快速R-CNN采用多项创新技术来提高训练和测试速度,同时 ...

  10. 标题 发布状态 评论数 阅读数 操作 操作 CNN目标检测系列算法发展脉络简析——学习笔记(三):Fast R-CNN

    最近两周忙着上网课.投简历,博客没什么时间写,姑且把之前做的笔记放上来把... 下面是我之前看论文时记的笔记,之间copy上来了,内容是Fast R-CNN的,以后如果抽不出时间写博客,就放笔记上来( ...

随机推荐

  1. 用Exception类捕获所有异常的技术是怎么用的?

    3.用Exception类捕获所有异常  马克-to-win:注意,一个事实是:Exception类是所有其他异常类的父类,所以Exception类能捕获所有的异常.马克-to-win:问题是用Exc ...

  2. 简单的axios请求返回数据解构赋值

    本地  data.json 文件 { "name": "大熊", "age": 18, "fnc": [ 1, 2, 3 ...

  3. 什么是机器学习的特征工程?【数据集特征抽取(字典,文本TF-Idf)、特征预处理(标准化,归一化)、特征降维(低方差,相关系数,PCA)】

    2.特征工程 2.1 数据集 2.1.1 可用数据集 Kaggle网址:https://www.kaggle.com/datasets UCI数据集网址: http://archive.ics.uci ...

  4. 基于Vue开发的门户网站展示和后台数据管理系统

    基于Vue的前端框架有很多,这几年随着前端技术的官方应用,总有是学不完的前端知识在等着我们,一个人的精力也是有限,不可能一一掌握,不过我们学习很大程度都会靠兴趣驱动,或者目标导向,最终是可以以点破面, ...

  5. ES Bridge跨链桥服务升级,新增BSC跨链网络

    3月15日,Equal Sign Bridge(ES Bridge)跨链桥宣布新增BSC跨链网络,方便更多用户参与到ES Bridge的建设与发展,未来还将持续拓展更多的主流跨链币种,提升各链间的互操 ...

  6. AWS-Basic-S3

    Amazon Simple Storage Service,简称 S3 服务,是 AWS 2006 年推出的第一个服务,用于提供对象存储服务.其在可拓展性,数据可用性,安全性和性能都有着非常不错的体验 ...

  7. JVM调优篇

    点赞再看,养成习惯,微信搜索「小大白日志」关注这个搬砖人. 文章不定期同步公众号,还有各种一线大厂面试原题.我的学习系列笔记. 基础概念 一般JVM调优,重点在于调整JVM堆大小.调整垃圾回收器 jv ...

  8. python学习-Day17

    目录 今日内容详细 生成器对象(自定义迭代器) 小总结 自定义range方法 通过生成器模拟range方法 先以两个参数的range方法为例 针对一个参数情况 针对三个参数情况 自定义的range方法 ...

  9. 1.9 初学者应选择哪个Linux发行版?

    前面章节中,已经对几个常见的 Linux 发行版做了简单的介绍,那么对于初学者来说,选择哪个发行版的性价比更高呢? 通常情况下,初学者学习 Linux,是为了找一份和 Linux 相关的工作,那么问题 ...

  10. Kubernetes 从入门到进阶实战教程 (2021 最新万字干货版)

    作者:oonamao 毛江云,腾讯 CSIG 应用开发工程师原文:来源腾讯技术工程,https://tinyurl.com/ya3ennxf 写在前面 笔者今年 9 月从端侧开发转到后台开发,第一个系 ...