C# 蓄水池抽样
蓄水池采样算法解决的是在给定但长度未知的大数据集中,随机等概率抽取一个数据。如果知道数据的长度,可以用随机数rand()%n得到一个确切的随机位置,或者分块取值来构造随机,那么该位置的对象就是所求的对象,选中的概率是1/n。那长度未知特别是如果这个大数据集不能一次性放入内存中,蓄水池抽样算法就非常有用,在我的项目中采用的蓄水池随机抽样还加入了权重的计算。
其中方法中核心代码,也就是蓄水池抽样就是如下代码。
if (i < spotQuantity)
{
titleIndexList.Add(i);
eigenValueList.Add(tempEigenValue);
}
else
{
double minEigenValue = eigenValueList.Min();
int minIndex = eigenValueList.IndexOf(minEigenValue);
if (tempEigenValue > minEigenValue)
{
eigenValueList[minIndex] = tempEigenValue;
titleIndexList[minIndex] = i;
}
}
首先从计算出的要抽取多少数量,根据数据循环,先让抽取数量的数据放入池子中titleIndexList,并且将对应数据的权重放入到抽取数据的权重列表。
在后面的循环中,判断抽取的权重如果大于已经抽取的最小权重则替换最小权重的数据为当前循环的数据。
如果你不是按照权重,则可以产生一个随机数,如果随机数落在已经抽取队列的数组下标内,则替换掉原来的下标数据也能实现随机性。
public static void WeightedSampling(List<article> articleList, int grade)
{
//根据传入的grade 计算一个抽样数量。
double sampleFactor = (double)Math.Pow((double)1 / (1 + grade), Math.E);
var spotQuantity = (int)Math.Ceiling(articleList.Count() * sampleFactor);
//如果规则抽的数量已经超过随机抽取数则不再抽取
var spotedCount = articleList.Where(t => t.isspot == 1).Count();
if (spotedCount >= spotQuantity)
return;
//如果数量不足则补齐
spotQuantity -= spotedCount;
var spotTitleList = articleList.Where(t => t.isspot != 1).ToList();
//实例化池子和数据权重List
List<int> titleIndexList = new List<int>();
List<double> eigenValueList = new List<double>();
if (spotArticle.Count() <= spotQuantity)
{
for (int i = 0; i < spotArticle.Count(); i++)
{
spotArticle[i].isspot = 1;
}
}
else
{
var random = new Random();
for (int i = 0; i < spotTitleList.Count; i++)
{
double tempWeight = spotTitleList[i].eigenvalue;
double tempEigenValue = Math.Pow(random.NextDouble(), 1 / tempWeight);
if (i < spotQuantity)
{
titleIndexList.Add(i);
eigenValueList.Add(tempEigenValue);
}
else
{
double minEigenValue = eigenValueList.Min();
int minIndex = eigenValueList.IndexOf(minEigenValue);
if (tempEigenValue > minEigenValue)
{
eigenValueList[minIndex] = tempEigenValue;
titleIndexList[minIndex] = i;
}
}
}
//将抽取出来的对象isspot 抽取标志设置为1
foreach (var index in titleIndexList)
{
spotTitleList[index].isspot = 1;
}
}
}
该方法对于我们平时项目中抽取不知道数据长度的随机数是非常好用的算法,同时该算法不复杂其时间复杂度为O(n)。
C# 蓄水池抽样的更多相关文章
- Reservoir Sampling - 蓄水池抽样
问题起源于编程珠玑Column 12中的题目10,其描述如下: How could you select one of n objects at random, where you see the o ...
- 蓄水池抽样(原理&实现)
前言: 蓄水池抽样:从N个元素中随机的等概率的抽取k个元素,其中N无法确定. 适用场景: 模式识别等概率抽样,抽样查看渐增的log日志(无法先保存整个数据流然后再从中选取,而是期望有一种将数据流遍历一 ...
- Reservoir Sampling - 蓄水池抽样问题
问题起源于编程珠玑Column 12中的题目10,其描述如下: How could you select one of n objects at random, where you see the o ...
- 【算法34】蓄水池抽样算法 (Reservoir Sampling Algorithm)
蓄水池抽样算法简介 蓄水池抽样算法随机算法的一种,用来从 N 个样本中随机选择 K 个样本,其中 N 非常大(以至于 N 个样本不能同时放入内存)或者 N 是一个未知数.其时间复杂度为 O(N),包含 ...
- Reservoir Sampling - 蓄水池抽样算法&&及相关等概率问题
蓄水池抽样——<编程珠玑>读书笔记 382. Linked List Random Node 398. Random Pick Index 从n个数中随机选取m个 等概率随机函数面试题总结 ...
- leetcode398 and leetcode 382 蓄水池抽样算法
382. 链表随机节点 给定一个单链表,随机选择链表的一个节点,并返回相应的节点值.保证每个节点被选的概率一样. 进阶:如果链表十分大且长度未知,如何解决这个问题?你能否使用常数级空间复杂度实现? 示 ...
- C#LeetCode刷题-蓄水池抽样
蓄水池抽样篇 # 题名 刷题 通过率 难度 382 链表随机节点 47.0% 中等 398 随机数索引 41.6% 中等
- 【数据结构与算法】蓄水池抽样算法(Reservoir Sampling)
问题描述 给定一个数据流,数据流长度 N 很大,且 N 直到处理完所有数据之前都不可知,请问如何在只遍历一遍数据(O(N))的情况下,能够随机选取出 m 个不重复的数据. 比较直接的想法是利用随机数算 ...
- Reservoir Sampling 蓄水池抽样算法,经典抽样
随机读取数据,如何保证真随机是不可能的,因为计算机的随机函数是伪随机的. 但是在不考虑计算机随机函数的情况下,如何保证数据的随机采样呢? 1.系统提供的shuffle函数 C++/Java都提供有sh ...
随机推荐
- sticker-footer 布局
sticker-footer 1.嵌套层级不深,可直接继承自 body width:100%: height:100%; // html <body> <div id="s ...
- ubantu系统之快捷键使用
1. 文件管理器中,目录切换为可以编辑的状态: ctrl + l 2. gedit 搜索 : ctrl + h
- Tomcat安装(安装版)
安装Tomcat(安装版) 下载地址https://tomcat.apache.org/ 下载成功,双击进行安装(一路Next). 等待安装结束. 然后打开浏览器输入地址:http://localho ...
- Spring MVC框架搭建及其详解
现在主流的Web MVC框架除了Struts这个主力 外,其次就是Spring MVC了,因此这也是作为一名程序员需要掌握的主流框架,框架选择多了,应对多变的需求和业务时,可实行的方案自然就多了.不过 ...
- javascript回调地狱真的只能Promise来解决吗?js回调地狱,Promise。
javascript的灵活在于函数可以当作函数的参数来传递,以及它的异步回调思想.但是这就带了一个很严重的问题,那就是回调次数过多,会影响代码结构,多层嵌套影响代码的可阅读性,也不便于书写. 举个例子 ...
- vue Element验证input提示
<el-form-item prop="userName" class="userName_color"> <b>详细地址<i c ...
- uni-app中实现左侧导航栏效果
HTML: 1 <view class="list"> 2 <!-- 一级 --> 3 <scroll-view class="list-l ...
- Django实现统一包装接口返回值数据格式
前言 最近实在太忙了,开始了一个新的项目,为了快速形成产品,我选择了Django来实现后端,然后又拿起了之前我封装了项目脚手架「DjangoStarter」. 由于前段时间我写了不少.NetCore的 ...
- 自学java如何快速地达到工作的要求?
自学java如何快速地达到工作的要求,是很多初学者都比较关心的问题,对于初学者来说,盲目自学不但不能快速入门,还会浪费大量的时间. 今天知了堂就来分享自学Java如何快速达到找工作的要求. 1.自学J ...
- DirectX11 With Windows SDK--38 级联阴影映射(CSM)
前言 在31章我们曾经实现过阴影映射,但是受到阴影贴图精度的限制,只能在场景中相当有限的范围内投射阴影.本章我们将以微软提供的例子和博客作为切入点,学习如何解决阴影中出现的Atrifacts: 边缘闪 ...