victoriaMetrics库之布隆过滤器

代码路径:/lib/bloomfilter

概述

victoriaMetrics的vmstorage组件会接收上游传递过来的指标,在现实场景中,指标或瞬时指标的数量级可能会非常恐怖,如果不限制缓存的大小,有可能会由于cache miss而导致出现过高的slow insert

为此,vmstorage提供了两个参数:maxHourlySeriesmaxDailySeries,用于限制每小时/每天添加到缓存的唯一序列。

唯一序列指表示唯一的时间序列,如metrics{label1="value1",label2="value2"}属于一个时间序列,但多条不同值的metrics{label1="value1",label2="value2"}属于同一条时间序列。victoriaMetrics使用如下方式来获取时序的唯一标识:

func getLabelsHash(labels []prompbmarshal.Label) uint64 {
bb := labelsHashBufPool.Get()
b := bb.B[:0]
for _, label := range labels {
b = append(b, label.Name...)
b = append(b, label.Value...)
}
h := xxhash.Sum64(b)
bb.B = b
labelsHashBufPool.Put(bb)
return h
}

限速器的初始化

victoriaMetrics使用了一个类似限速器的概念,限制每小时/每天新增的唯一序列,但与普通的限速器不同的是,它需要在序列级别进行限制,即判断某个序列是否是新的唯一序列,如果是,则需要进一步判断一段时间内缓存中新的时序数目是否超过限制,而不是简单地在请求层面进行限制。

hourlySeriesLimiter = bloomfilter.NewLimiter(*maxHourlySeries, time.Hour)
dailySeriesLimiter = bloomfilter.NewLimiter(*maxDailySeries, 24*time.Hour)

下面是新建限速器的函数,传入一个最大(序列)值,以及一个刷新时间。该函数中会:

  1. 初始化一个限速器,限速器的最大元素个数为maxItems
  2. 则启用了一个goroutine,当时间达到refreshInterval时会重置限速器
func NewLimiter(maxItems int, refreshInterval time.Duration) *Limiter {
l := &Limiter{
maxItems: maxItems,
stopCh: make(chan struct{}),
}
l.v.Store(newLimiter(maxItems)) //1
l.wg.Add(1)
go func() {
defer l.wg.Done()
t := time.NewTicker(refreshInterval)
defer t.Stop()
for {
select {
case <-t.C:
l.v.Store(newLimiter(maxItems))//2
case <-l.stopCh:
return
}
}
}()
return l
}

限速器只有一个核心函数Add,当vmstorage接收到一个指标之后,会(通过getLabelsHash计算该指标的唯一标识(h),然后调用下面的Add函数来判断该唯一标识是否存在于缓存中。

如果当前存储的元素个数大于等于允许的最大元素,则通过过滤器判断缓存中是否已经存在该元素;否则将该元素直接加入过滤器中,后续允许将该元素加入到缓存中。

func (l *Limiter) Add(h uint64) bool {
lm := l.v.Load().(*limiter)
return lm.Add(h)
} func (l *limiter) Add(h uint64) bool {
currentItems := atomic.LoadUint64(&l.currentItems)
if currentItems >= uint64(l.f.maxItems) {
return l.f.Has(h)
}
if l.f.Add(h) {
atomic.AddUint64(&l.currentItems, 1)
}
return true
}

上面的过滤器采用的是布隆过滤器,核心函数为HasAdd,分别用于判断某个元素是否存在于过滤器中,以及将元素添加到布隆过滤器中。

过滤器的初始化函数如下,bitsPerItem是个常量,值为16。bitsCount统计了过滤器中的总bit数,每个bit表示某个值的存在性。bits以64bit为单位的(后续称之为slot,目的是为了在bitsCount中快速检索目标bit)。计算bits时加上63的原因是为了四舍五入向上取值,比如当maxItems=1时至少需要1个unit64的slot。

func newFilter(maxItems int) *filter {
bitsCount := maxItems * bitsPerItem
bits := make([]uint64, (bitsCount+63)/64)
return &filter{
maxItems: maxItems,
bits: bits,
}
}

为什么bitsPerItem为16?这篇文章给出了如何计算布隆过滤器的大小。在本代码中,k为4(hashesCount),期望的漏失率为0.003(可以从官方的filter_test.go中看出),则要求总存储和总元素的比例为15,为了方便检索slot(64bit,为16的倍数),将之设置为16。

	if p > 0.003 {
t.Fatalf("too big false hits share for maxItems=%d: %.5f, falseHits: %d", maxItems, p, falseHits)
}

下面是过滤器的Add操作,目的是在过滤器中添加某个元素。Add函数中没有使用多个哈希函数来计算元素的哈希值,转而改变同一个元素的值,然后对相应的值应用相同的哈希函数,元素改变的次数受hashesCount的限制。

  1. 获取过滤器的完整存储,并转换为以bit单位
  2. 将元素h转换为byte数组,便于xxhash.Sum64计算
  3. 后续将执行hashesCount次哈希,降低漏失率
  4. 计算元素h的哈希
  5. 递增元素h,为下一次哈希做准备
  6. 取余法获取元素的bit范围
  7. 获取元素所在的slot(即uint64大小的bit范围)
  8. 获取元素所在的slot中的bit位,该位为1表示该元素存在,为0表示该元素不存在
  9. 获取元素所在bit位的掩码
  10. 加载元素所在的slot的数值
  11. 如果w & mask结果为0,说明该元素不存在,
  12. 将元素所在的slot(w)中的元素所在的bit位(mask)置为1,表示添加了该元素
  13. 由于Add函数可以并发访问,因此bits[i]有可能被其他操作修改,因此需要通过重新加载(14)并通过循环来在bits[i]中设置该元素的存在性
func (f *filter) Add(h uint64) bool {
bits := f.bits
maxBits := uint64(len(bits)) * 64 //1
bp := (*[8]byte)(unsafe.Pointer(&h))//2
b := bp[:]
isNew := false
for i := 0; i < hashesCount; i++ {//3
hi := xxhash.Sum64(b)//4
h++ //5
idx := hi % maxBits //6
i := idx / 64 //7
j := idx % 64 //8
mask := uint64(1) << j //9
w := atomic.LoadUint64(&bits[i])//10
for (w & mask) == 0 {//11
wNew := w | mask //12
if atomic.CompareAndSwapUint64(&bits[i], w, wNew) {//13
isNew = true//14
break
}
w = atomic.LoadUint64(&bits[i])//14
}
}
return isNew
}

看懂了Add函数,Has就相当简单了,它只是Add函数的缩减版,无需设置bits[i]

func (f *filter) Has(h uint64) bool {
bits := f.bits
maxBits := uint64(len(bits)) * 64
bp := (*[8]byte)(unsafe.Pointer(&h))
b := bp[:]
for i := 0; i < hashesCount; i++ {
hi := xxhash.Sum64(b)
h++
idx := hi % maxBits
i := idx / 64
j := idx % 64
mask := uint64(1) << j
w := atomic.LoadUint64(&bits[i])
if (w & mask) == 0 {
return false
}
}
return true
}

总结

由于victoriaMetrics的过滤器采用的是布隆过滤器,因此它的限速并不精准,在源码条件下, 大约有3%的偏差。但同样地,由于采用了布隆过滤器,降低了所需的内存以及相关计算资源。此外victoriaMetrics的过滤器实现了并发访问。

在大流量场景中,如果需要对请求进行相对精准的过滤,可以考虑使用布隆过滤器,降低所需要的资源,但前提是过滤的结果能够忍受一定程度的漏失率。

victoriaMetrics库之布隆过滤器的更多相关文章

  1. 【布隆过滤器】基于Hutool库实现的布隆过滤器Demo

    布隆过滤器出现的背景: 如果想判断一个元素是不是在一个集合里,一般想到的是将集合中所有元素保存起来,然后通过比较确定.链表.树.散列表(又叫哈希表,Hash table)等等数据结构都是这种思路,存储 ...

  2. 布隆过滤器的概述及Python实现

    布隆过滤器 布隆过滤器是一种概率空间高效的数据结构.它与hashmap非常相似,用于检索一个元素是否在一个集合中.它在检索元素是否存在时,能很好地取舍空间使用率与误报比例.正是由于这个特性,它被称作概 ...

  3. Redis05——Redis高级运用(管道连接,发布订阅,布隆过滤器)

    Redis高级运用 一.管道连接redis(一次发送多个命令,节省往返时间) 1.安装nc yum install nc -y 2.通过nc连接redis nc localhost 6379 3.通过 ...

  4. Redis: 缓存过期、缓存雪崩、缓存穿透、缓存击穿(热点)、缓存并发(热点)、多级缓存、布隆过滤器

    Redis: 缓存过期.缓存雪崩.缓存穿透.缓存击穿(热点).缓存并发(热点).多级缓存.布隆过滤器 2019年08月18日 16:34:24 hanchao5272 阅读数 1026更多 分类专栏: ...

  5. Redis详解(十三)------ Redis布隆过滤器

    本篇博客我们主要介绍如何用Redis实现布隆过滤器,但是在介绍布隆过滤器之前,我们首先介绍一下,为啥要使用布隆过滤器. 1.布隆过滤器使用场景 比如有如下几个需求: ①.原本有10亿个号码,现在又来了 ...

  6. Scrapy分布式爬虫,分布式队列和布隆过滤器,一分钟搞定?

    使用Scrapy开发一个分布式爬虫?你知道最快的方法是什么吗?一分钟真的能 开发好或者修改出 一个分布式爬虫吗? 话不多说,先让我们看看怎么实践,再详细聊聊细节~ 快速上手 Step 0: 首先安装 ...

  7. Redis解读(4):Redis中HyperLongLog、布隆过滤器、限流、Geo、及Scan等进阶应用

    Redis中的HyperLogLog 一般我们评估一个网站的访问量,有几个主要的参数: pv,Page View,网页的浏览量 uv,User View,访问的用户 一般来说,pv 或者 uv 的统计 ...

  8. 从位图到布隆过滤器,C#实现

    前言 本文将以 C# 语言来实现一个简单的布隆过滤器,为简化说明,设计得很简单,仅供学习使用. 感谢@时总百忙之中的指导. 布隆过滤器简介 布隆过滤器(Bloom filter)是一种特殊的 Hash ...

  9. Redis布隆过滤器和布谷鸟过滤器

    一.过滤器使用场景:比如有如下几个需求:1.原本有10亿个号码,现在又来了10万个号码,要快速准确判断这10万个号码是否在10亿个号码库中? 解决办法一:将10亿个号码存入数据库中,进行数据库查询,准 ...

随机推荐

  1. 原生JS实现拼图游戏

    最近无聊,练练原生JS:实现拼图游戏.两种玩法:第一种是单击元素进行交换位置:第二种是拖拽元素进行位置交换.首先需要上传图片并进行回显(需要用到FileReader):下面是部分截图: 可以自行设置切 ...

  2. 使用flask进行mock接口

    在测试日常过程中,我们经常会遇到因为环境问题,或者是因为上下游,前后端开发进度不一,提测时间不一等情况.这时候我们可以通过mock的方式去完成一些操作.今天给大家分享一个通过flask去mock接口, ...

  3. Java将彩色PDF转为灰度

    本文以Java代码为例介绍如何实现将彩色PDF文件转为灰度(黑白)的PDF文件,即:将PDF文档里面的彩色图片或者文字等通过调用PdfGrayConverter.toGrayPdf()方法转为文档页面 ...

  4. k8s 开船记-脚踏两只船:船儿还是旧的好,不翻船才是硬道理

    自从上次开始脚踏两只船(2个独立的k8s集群同时运行),园子暂时用奢侈的土豪方式过上了安稳的船上生活. 这种方式除了费钱之外,还带来一个问题,我们的集装箱自动装船系统(基于gitlab-ci的自动化部 ...

  5. 在 Ubuntu 上使用源码安装 OpenResty

    镜像下载.域名解析.时间同步请点击 阿里云开源镜像站 本文将介绍如何在 Ubuntu 上使用源码安装 OpenResty. 目标 Ubuntu 18.04 OpenResty 1.19.3.2 安装依 ...

  6. DHCP协议简析

    推荐这篇文章,原理及抓包都分析的很好: **推荐这篇文章,原理及抓包都分析的很好:** https://blog.csdn.net/andy_93/article/details/78238931 简 ...

  7. OpenCores注册步骤和成功提交

    一  OpenCores 网站简介,这个是全世界最大的FPGA开源IP核网站.由于最近在学习USB2.0host control IP,所以想去网上下载相关的IP例程学习.通过搜索发现,有两个网站十分 ...

  8. FOC实现概述

    FOC原理框图如下: 其中涉及到两种坐标转换: 1. Clark变换:常规的三相坐标系→静止的二相坐标系α.β 正变换矩阵 $\left[ {\begin{array}{*{20}{c}}{\sqrt ...

  9. Prometheusbu部署使用-1

    Prometheus+grafana部署使用 主机列表: 192.168.161.130 : Prometheus 192.168.161.128 : node-1 192.168.161.129 : ...

  10. RocketMQ下载安装

    windows下RocketMQ下载安装教程   一.下载 1.官网下载:http://rocketmq.apache.org/dowloading/releases/ 2.百度网盘下载:https: ...