(零)注意力模型(Attention Model)

1)本质:【选择重要的部分】,注意力权重的大小体现选择概率值,以非均匀的方式重点关注感兴趣的部分。

2)注意力机制已成为人工智能的一个重要概念,其在计算机视觉、自然语言处理等众多领域得到了广泛的研究和应用。

3)注意力机制模仿了生物观察行为的内部过程。例如,视觉处理系统倾向于有选择地关注图像某些部分,而忽略其他无关的信息,以一种有助于感知的方式(our visual processing system tends to focus selectively on some parts of the image, while ignoring other irrelevant information in a manner that can assist in perception.)如下图所示。

输入的某些部分比其余部分更重要,这种性质在大多数的任务中是通用和重要的,例如,在机器翻译和摘要任务(machine translation and summarization)中,只有输入序列中的特定单词可能与预测下一个单词有关。同样的,在视觉字幕(image captioning)中,输入图像中某些区域可能对于生成字幕中的下一个单词更重要。

4)注意力机制是上述直觉的具体实现:整合相关部分,使模型动态地仅关注输入的重要部分,从而更有效地实现任务(allowing the model to dynamically pay attention to only certain parts of the input )。

5)了解了注意力的起因和作用后,下面分别介绍:(一)通用注意力模型,(二)不同类型的注意力模型分类,(三)不同架构的注意力模型。

(一)通用注意力模型(Generalized Attention Model)

  通用的注意力模型包括两个输入:查询Query ($q$) 和内容Keys(表示为: $\bf{k}$$=k_1,$ $k_2,$ $\ldots,$ $k_n$),而注意力模型可以看做:相对于查询 $q$,将 $q$与一系列内容Keys 的相关性 $\bf{s}=\{s_i\}_{i=1}^{n}$(也称为对齐),映射为注意力分布 $\bf{\alpha}$$=\{ \alpha_i\}_{i=1}^{n}$ 的过程。注意力分布$\alpha_i$强调的是:相对于查询$q$,每个内容$k_i$与其的相关程度。

  因此,关于两个输入 $q$ 和 $\bf{k}$,通用注意力的计算过程涉及到两个计算步骤:1)确定Query和Keys的相关性,即$s_i = s(q, k_i)$,其中$s(\cdot)$为对齐函数(Alignment function);2)将一系列相关程度映射为注意力分布$\bf{\alpha}=p(\bf{s})$,其中$p(\cdot)$为分布函数(Distribution function)。因此,注意力模型可以表示为:

s_1, s_2, \ldots,s_i

$k_1,$ $ k_2,$ $ \ldots,$ $ k_n$)

$s_i = s(q, k_i)$,

($\bf{\alpha}=p(\bf{s})$)

注意力机制最新综述:A Comprehensive Overview of the Developments in Attention Mechanism的更多相关文章

  1. TensorFlow LSTM 注意力机制图解

    TensorFlow LSTM Attention 机制图解 深度学习的最新趋势是注意力机制.在接受采访时,现任OpenAI研究主管的Ilya Sutskever提到,注意力机制是最令人兴奋的进步之一 ...

  2. 自适应注意力机制在Image Caption中的应用

    在碎片化阅读充斥眼球的时代,越来越少的人会去关注每篇论文背后的探索和思考. 在这个栏目里,你会快速 get 每篇精选论文的亮点和痛点,时刻紧跟 AI 前沿成果. 点击本文底部的「阅读原文」即刻加入社区 ...

  3. (转)注意力机制(Attention Mechanism)在自然语言处理中的应用

    注意力机制(Attention Mechanism)在自然语言处理中的应用 本文转自:http://www.cnblogs.com/robert-dlut/p/5952032.html  近年来,深度 ...

  4. 注意力机制(Attention Mechanism)在自然语言处理中的应用

    注意力机制(Attention Mechanism)在自然语言处理中的应用 近年来,深度学习的研究越来越深入,在各个领域也都获得了不少突破性的进展.基于注意力(attention)机制的神经网络成为了 ...

  5. Deep Learning论文笔记之(八)Deep Learning最新综述

    Deep Learning论文笔记之(八)Deep Learning最新综述 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些论文,但老感觉看完 ...

  6. 自然语言处理中的自注意力机制(Self-attention Mechanism)

    自然语言处理中的自注意力机制(Self-attention Mechanism) 近年来,注意力(Attention)机制被广泛应用到基于深度学习的自然语言处理(NLP)各个任务中,之前我对早期注意力 ...

  7. 深度学习之注意力机制(Attention Mechanism)和Seq2Seq

    这篇文章整理有关注意力机制(Attention Mechanism )的知识,主要涉及以下几点内容: 1.注意力机制是为了解决什么问题而提出来的? 2.软性注意力机制的数学原理: 3.软性注意力机制. ...

  8. Pytorch系列教程-使用Seq2Seq网络和注意力机制进行机器翻译

    前言 本系列教程为pytorch官网文档翻译.本文对应官网地址:https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutor ...

  9. DeepLearning.ai学习笔记(五)序列模型 -- week2 序列模型和注意力机制

    一.基础模型 假设要翻译下面这句话: "简将要在9月访问中国" 正确的翻译结果应该是: "Jane is visiting China in September" ...

随机推荐

  1. Python打印表格

    使用Python在终端打印表格 import prettytable table = PrettyTable(['Title1', 'Title2', 'Title3']) table.add_row ...

  2. selenium模块跳过用户名密码验证码输入,加载浏览器标签和cookie,进行翻页爬虫多页动态加载的数据(js)

    能解决登陆一次后,之后不需要二次登陆的动态加载数据,网页保存的cookie和标签,加入到selenium自动化测试浏览器中 1 from selenium import webdriver 2 imp ...

  3. Java 获取Word中的所有插入和删除修订

    在 Word 文档中启用跟踪更改功能后,会记录文档中的所有编辑行为,例如插入.删除.替换和格式更改.对插入或删除的内容,可通过本文中介绍的方法来获取. 引入Jar 方法1 手动引入:将 Free Sp ...

  4. MyBatis插件 - 通用mapper

    1.简单认识通用mapper 1.1.了解mapper 作用:就是为了帮助我们自动的生成sql语句 [ ps:MyBatis需要编写xxxMapper.xml,而逆向工程是根据entity实体类来进行 ...

  5. ServletContext类 (共享数据+获取初始化的参数+请求转发+读取资源文件)

    ServletContext对象 web容器在启动的时候,它会为每个web程序都创建一个对应的ServletContext对象,它代表了当前的 web应用: 作用 1.共享数据  (一般用sessio ...

  6. 排序算法详解(java代码实现)

    ​ 排序算法大致分为内部排序和外部排序两种 内部排序:待排序的记录全部放到内存中进行排序,时间复杂度也就等于比较的次数 外部排序:数据量很大,内存无法容纳,需要对外存进行访问再排序,把若干段数据一次读 ...

  7. vue 常见指令

    vue 常见的指令 v-bind:单向绑定解析表达式可简写为  :xxxx v-model: 双向数据绑定 v-for : 遍历数组/对象/字符串 v-on :绑定事件监听,.可简写为@ v-if : ...

  8. 数据结构_C语言_单链表

    # include <stdio.h> # include <stdbool.h> # include <malloc.h> typedef int DataTyp ...

  9. HTML5 Canvas 超逼真烟花绽放动画

    各位前端朋友们,大家好!五一假期即将结束,在开启加班模式之前,我要给大家分享一个超酷超逼真的HTML5 Canvas烟花模拟动画.这次升级版的烟花动画有以下几个特点: 烟花绽放时,将展现不同的色彩,不 ...

  10. MongoDB 常用运维实践总结

    关注「开源Linux」,选择"设为星标" 回复「学习」,有我为您特别筛选的学习资料~ 一.MongoDB 集群简介 MongoDB是一个基于分布式文件存储的数据库,其目的在于为WE ...