本文首发于我的个人博客网站 等待下一个秋-Flink

什么是CDC?

CDC是(Change Data Capture 变更数据获取)的简称。核心思想是,监测并捕获数据库的变动(包括数据 或 数据表的插入INSERT、更新UPDATE、删除DELETE等),将这些变更按发生的顺序完整记录下来,写入到消息中间件中以供其他服务进行订阅及消费。

1. 环境准备

  • mysql

  • Hive

  • flink 1.13.5 on yarn

说明:如果没有安装hadoop,那么可以不用yarn,直接用flink standalone环境吧。

2. 下载下列依赖包

下面两个地址下载flink的依赖包,放在lib目录下面。

  1. flink-sql-connector-hive-2.2.0_2.11-1.13.5.jar

如果你的Flink是其它版本,可以来这里下载。

说明:我hive版本是2.1.1,为啥这里我选择版本号是2.2.0呢,这是官方文档给出的版本对应关系:

Metastore version Maven dependency SQL Client JAR
1.0.0 - 1.2.2 flink-sql-connector-hive-1.2.2 Download
2.0.0 - 2.2.0 flink-sql-connector-hive-2.2.0 Download
2.3.0 - 2.3.6 flink-sql-connector-hive-2.3.6 Download
3.0.0 - 3.1.2 flink-sql-connector-hive-3.1.2 Download

官方文档地址在这里,可以自行查看。

3. 启动flink-sql client

  1. 先在yarn上面启动一个application,进入flink13.5目录,执行:
bin/yarn-session.sh -d -s 2 -jm 1024 -tm 2048 -qu root.sparkstreaming -nm flink-cdc-hive
  1. 进入flink sql命令行
bin/sql-client.sh embedded -s flink-cdc-hive

4. 操作Hive

1) 首选创建一个catalog

CREATE CATALOG hive_catalog WITH (
'type' = 'hive',
'hive-conf-dir' = '/etc/hive/conf.cloudera.hive'
);

这里需要注意:hive-conf-dir是你的hive配置文件地址,里面需要有hive-site.xml这个主要的配置文件,你可以从hive节点复制那几个配置文件到本台机器上面。

2) 查询

此时我们应该做一些常规DDL操作,验证配置是否有问题:

use catalog hive_catalog;
show databases;

随便查询一张表

use test
show tables;
select * from people;

可能会报错:

把hadoop-mapreduce-client-core-3.0.0.jar放到flink的Lib目录下,这是我的,实际要根据你的hadoop版本对应选择。

注意:很关键,把这个jar包放到Lib下面后,需要重启application,然后重新用yarn-session启动一个application,因为我发现好像有缓存,把这个application kill 掉,重启才行:

然后,数据可以查询了,查询结果:

5. mysql数据同步到hive

mysql数据无法直接在flink sql导入hive,需要分成两步:

  1. mysql数据同步kafka;
  2. kafka数据同步hive;

至于mysql数据增量同步到kafka,前面有文章分析,这里不在概述;重点介绍kafka数据同步到hive。

1) 建表跟kafka关联绑定:

前面mysql同步到kafka,在flink sql里面建表,connector='upsert-kafka',这里有区别:

CREATE TABLE product_view_mysql_kafka_parser(
`id` int,
`user_id` int,
`product_id` int,
`server_id` int,
`duration` int,
`times` string,
`time` timestamp
) WITH (
'connector' = 'kafka',
'topic' = 'flink-cdc-kafka',
'properties.bootstrap.servers' = 'kafka-001:9092',
'scan.startup.mode' = 'earliest-offset',
'format' = 'json'
);

2) 建一张hive表

创建hive需要指定SET table.sql-dialect=hive;,否则flink sql 命令行无法识别这个建表语法。为什么需要这样,可以看看这个文档Hive 方言

-- 创建一个catalag用户hive操作
CREATE CATALOG hive_catalog WITH (
'type' = 'hive',
'hive-conf-dir' = '/etc/hive/conf.cloudera.hive'
);
use catalog hive_catalog; -- 可以看到我们的hive里面有哪些数据库
show databases;
use test;
show tables;

上面我们可以现在看看hive里面有哪些数据库,有哪些表;接下来创建一张hive表:

CREATE TABLE product_view_kafka_hive_cdc (
`id` int,
`user_id` int,
`product_id` int,
`server_id` int,
`duration` int,
`times` string,
`time` timestamp
) STORED AS parquet TBLPROPERTIES (
'sink.partition-commit.trigger'='partition-time',
'sink.partition-commit.delay'='0S',
'sink.partition-commit.policy.kind'='metastore,success-file',
'auto-compaction'='true',
'compaction.file-size'='128MB'
);

然后做数据同步:

insert into hive_catalog.test.product_view_kafka_hive_cdc
select *
from
default_catalog.default_database.product_view_mysql_kafka_parser;

注意:这里指定表名,我用的是catalog.database.table,这种格式,因为这是两个不同的库,需要明确指定catalog - database - table。

网上还有其它方案,关于mysql实时增量同步到hive:

网上看到一篇写的实时数仓架构方案,觉得还可以:

参考资料

https://nightlies.apache.org/flink/flink-docs-release-1.13/zh/docs/connectors/table/hive/hive_dialect/

flink-cdc同步mysql数据到hive的更多相关文章

  1. 使用Logstash来实时同步MySQL数据到ES

    上篇讲到了ES和Head插件的环境搭建和配置,也简单模拟了数据作测试 本篇我们来实战从MYSQL里直接同步数据 一.首先下载和你的ES对应的logstash版本,本篇我们使用的都是6.1.1 下载后使 ...

  2. 使用logstash同步MySQL数据到ES

    使用logstash同步MySQL数据到ES 版权声明:[分享也是一种提高]个人转载请在正文开头明显位置注明出处,未经作者同意禁止企业/组织转载,禁止私自更改原文,禁止用于商业目的. https:// ...

  3. Logstash使用jdbc_input同步Mysql数据时遇到的空时间SQLException问题

    今天在使用Logstash的jdbc_input插件同步Mysql数据时,本来应该能搜索出10条数据,结果在Elasticsearch中只看到了4条,终端中只给出了如下信息 [2017-08-25T1 ...

  4. 使用sqoop把mysql数据导入hive

    使用sqoop把mysql数据导入hive export HADOOP_COMMON_HOME=/hadoop export HADOOP_MAPRED_HOME=/hadoop   cp /hive ...

  5. 推荐一个同步Mysql数据到Elasticsearch的工具

    把Mysql的数据同步到Elasticsearch是个很常见的需求,但在Github里找到的同步工具用起来或多或少都有些别扭. 例如:某记录内容为"aaa|bbb|ccc",将其按 ...

  6. wind本地MySQL数据到hive的指定路径

    一:使用:kettle:wind本地MySQL数据到hive的指定路径二:问题:没有root写权限网上说的什么少jar包,我这里不存在这种情况,因为我自己是导入jar包的:mysql-connecto ...

  7. wind本地MySQL数据到hive的指定路径,Could not create file

    一:使用:kettle:wind本地MySQL数据到hive的指定路径二:问题:没有root写权限网上说的什么少jar包,我这里不存在这种情况,因为我自己是导入jar包的:mysql-connecto ...

  8. centos7配置Logstash同步Mysql数据到Elasticsearch

    Logstash 是开源的服务器端数据处理管道,能够同时从多个来源采集数据,转换数据,然后将数据发送到您最喜欢的“存储库”中.个人认为这款插件是比较稳定,容易配置的使用Logstash之前,我们得明确 ...

  9. 快速同步mysql数据到redis中

    MYSQL快速同步数据到Redis 举例场景:存储游戏玩家的任务数据,游戏服务器启动时将mysql中玩家的数据同步到redis中. 从MySQL中将数据导入到Redis的Hash结构中.当然,最直接的 ...

随机推荐

  1. Java TIF、JPG、PNG等图片转换

    代码如下: public static void main(String[] args) { try { BufferedImage bufferegImage = ImageIO.read(new ...

  2. springboot修改文件上传大小

    servlet配置文件上传限制 spring: servlet: multipart: max-file-size: 1000MB max-request-size: 1000MB mysql设置re ...

  3. The following signatures couldn't be verified because the public key is not available: NO_PUBKEY 40976EAF437D05B5 NO_PUBKEY 3B4FE6ACC0B21F32

    apt-key adv --keyserver keyserver.ubuntu.com --recv-keys 3B4FE6ACC0B21F32

  4. 阈值PSI代码

    阈值PSI 若交集数量超过某个给定阈值时,允许分布式的各个参与方在自己集合中找到交集,且除了交集外,得不到其他额外信息. 实现论文: Multi-Party Threshold Private Set ...

  5. 基于OpenCV实现对图片及视频中感兴趣区域颜色识别

    基于OpenCV实现图片及视频中选定区域颜色识别 近期,需要实现检测摄像头中指定坐标区域内的主体颜色,通过查阅大量相关的内容,最终实现代码及效果如下,具体的实现步骤在代码中都详细注释,代码还可以进一步 ...

  6. 对比学习下的跨模态语义对齐是最优的吗?---自适应稀疏化注意力对齐机制 IEEE Trans. MultiMedia

    论文介绍:Unified Adaptive Relevance Distinguishable Attention Network for Image-Text Matching (统一的自适应相关性 ...

  7. Dubbo源码(五) - 服务目录

    前言 本文基于Dubbo2.6.x版本,中文注释版源码已上传github:xiaoguyu/dubbo 今天,来聊聊Dubbo的服务目录(Directory).下面是官方文档对服务目录的定义: 服务目 ...

  8. mysql 经典案例

    MySQL多表联合查询是MySQL数据库的一种查询方式,下面就为您介绍MySQL多表联合查询的语法,供您参考学习之用. MySQL多表联合查询语法: SELECT * FROM 插入表 LEFT JO ...

  9. C#委托的最简单入门和理解

      委托是.net语言中非常重要的一个概念,初学不太好理解也没有关系的,在一次一次的攻关后会领会到委托的精妙,可以说 .net 没有委托就没有后面更高级的事件,异步多线程等等特性的形成可能.所以一定要 ...

  10. 使用Hexo建立一个轻量、简易、高逼格的博客

    原文转载自「刘悦的技术博客」https://v3u.cn/a_id_93 在之前的一篇文章中,介绍了如何使用Hugo在三分钟之内建立一个简单的个人博客系统,它是基于go lang的,其实,市面上还有一 ...