本文首发于我的个人博客网站 等待下一个秋-Flink

什么是CDC?

CDC是(Change Data Capture 变更数据获取)的简称。核心思想是,监测并捕获数据库的变动(包括数据 或 数据表的插入INSERT、更新UPDATE、删除DELETE等),将这些变更按发生的顺序完整记录下来,写入到消息中间件中以供其他服务进行订阅及消费。

1. 环境准备

  • mysql

  • Hive

  • flink 1.13.5 on yarn

说明:如果没有安装hadoop,那么可以不用yarn,直接用flink standalone环境吧。

2. 下载下列依赖包

下面两个地址下载flink的依赖包,放在lib目录下面。

  1. flink-sql-connector-hive-2.2.0_2.11-1.13.5.jar

如果你的Flink是其它版本,可以来这里下载。

说明:我hive版本是2.1.1,为啥这里我选择版本号是2.2.0呢,这是官方文档给出的版本对应关系:

Metastore version Maven dependency SQL Client JAR
1.0.0 - 1.2.2 flink-sql-connector-hive-1.2.2 Download
2.0.0 - 2.2.0 flink-sql-connector-hive-2.2.0 Download
2.3.0 - 2.3.6 flink-sql-connector-hive-2.3.6 Download
3.0.0 - 3.1.2 flink-sql-connector-hive-3.1.2 Download

官方文档地址在这里,可以自行查看。

3. 启动flink-sql client

  1. 先在yarn上面启动一个application,进入flink13.5目录,执行:
bin/yarn-session.sh -d -s 2 -jm 1024 -tm 2048 -qu root.sparkstreaming -nm flink-cdc-hive
  1. 进入flink sql命令行
bin/sql-client.sh embedded -s flink-cdc-hive

4. 操作Hive

1) 首选创建一个catalog

CREATE CATALOG hive_catalog WITH (
'type' = 'hive',
'hive-conf-dir' = '/etc/hive/conf.cloudera.hive'
);

这里需要注意:hive-conf-dir是你的hive配置文件地址,里面需要有hive-site.xml这个主要的配置文件,你可以从hive节点复制那几个配置文件到本台机器上面。

2) 查询

此时我们应该做一些常规DDL操作,验证配置是否有问题:

use catalog hive_catalog;
show databases;

随便查询一张表

use test
show tables;
select * from people;

可能会报错:

把hadoop-mapreduce-client-core-3.0.0.jar放到flink的Lib目录下,这是我的,实际要根据你的hadoop版本对应选择。

注意:很关键,把这个jar包放到Lib下面后,需要重启application,然后重新用yarn-session启动一个application,因为我发现好像有缓存,把这个application kill 掉,重启才行:

然后,数据可以查询了,查询结果:

5. mysql数据同步到hive

mysql数据无法直接在flink sql导入hive,需要分成两步:

  1. mysql数据同步kafka;
  2. kafka数据同步hive;

至于mysql数据增量同步到kafka,前面有文章分析,这里不在概述;重点介绍kafka数据同步到hive。

1) 建表跟kafka关联绑定:

前面mysql同步到kafka,在flink sql里面建表,connector='upsert-kafka',这里有区别:

CREATE TABLE product_view_mysql_kafka_parser(
`id` int,
`user_id` int,
`product_id` int,
`server_id` int,
`duration` int,
`times` string,
`time` timestamp
) WITH (
'connector' = 'kafka',
'topic' = 'flink-cdc-kafka',
'properties.bootstrap.servers' = 'kafka-001:9092',
'scan.startup.mode' = 'earliest-offset',
'format' = 'json'
);

2) 建一张hive表

创建hive需要指定SET table.sql-dialect=hive;,否则flink sql 命令行无法识别这个建表语法。为什么需要这样,可以看看这个文档Hive 方言

-- 创建一个catalag用户hive操作
CREATE CATALOG hive_catalog WITH (
'type' = 'hive',
'hive-conf-dir' = '/etc/hive/conf.cloudera.hive'
);
use catalog hive_catalog; -- 可以看到我们的hive里面有哪些数据库
show databases;
use test;
show tables;

上面我们可以现在看看hive里面有哪些数据库,有哪些表;接下来创建一张hive表:

CREATE TABLE product_view_kafka_hive_cdc (
`id` int,
`user_id` int,
`product_id` int,
`server_id` int,
`duration` int,
`times` string,
`time` timestamp
) STORED AS parquet TBLPROPERTIES (
'sink.partition-commit.trigger'='partition-time',
'sink.partition-commit.delay'='0S',
'sink.partition-commit.policy.kind'='metastore,success-file',
'auto-compaction'='true',
'compaction.file-size'='128MB'
);

然后做数据同步:

insert into hive_catalog.test.product_view_kafka_hive_cdc
select *
from
default_catalog.default_database.product_view_mysql_kafka_parser;

注意:这里指定表名,我用的是catalog.database.table,这种格式,因为这是两个不同的库,需要明确指定catalog - database - table。

网上还有其它方案,关于mysql实时增量同步到hive:

网上看到一篇写的实时数仓架构方案,觉得还可以:

参考资料

https://nightlies.apache.org/flink/flink-docs-release-1.13/zh/docs/connectors/table/hive/hive_dialect/

flink-cdc同步mysql数据到hive的更多相关文章

  1. 使用Logstash来实时同步MySQL数据到ES

    上篇讲到了ES和Head插件的环境搭建和配置,也简单模拟了数据作测试 本篇我们来实战从MYSQL里直接同步数据 一.首先下载和你的ES对应的logstash版本,本篇我们使用的都是6.1.1 下载后使 ...

  2. 使用logstash同步MySQL数据到ES

    使用logstash同步MySQL数据到ES 版权声明:[分享也是一种提高]个人转载请在正文开头明显位置注明出处,未经作者同意禁止企业/组织转载,禁止私自更改原文,禁止用于商业目的. https:// ...

  3. Logstash使用jdbc_input同步Mysql数据时遇到的空时间SQLException问题

    今天在使用Logstash的jdbc_input插件同步Mysql数据时,本来应该能搜索出10条数据,结果在Elasticsearch中只看到了4条,终端中只给出了如下信息 [2017-08-25T1 ...

  4. 使用sqoop把mysql数据导入hive

    使用sqoop把mysql数据导入hive export HADOOP_COMMON_HOME=/hadoop export HADOOP_MAPRED_HOME=/hadoop   cp /hive ...

  5. 推荐一个同步Mysql数据到Elasticsearch的工具

    把Mysql的数据同步到Elasticsearch是个很常见的需求,但在Github里找到的同步工具用起来或多或少都有些别扭. 例如:某记录内容为"aaa|bbb|ccc",将其按 ...

  6. wind本地MySQL数据到hive的指定路径

    一:使用:kettle:wind本地MySQL数据到hive的指定路径二:问题:没有root写权限网上说的什么少jar包,我这里不存在这种情况,因为我自己是导入jar包的:mysql-connecto ...

  7. wind本地MySQL数据到hive的指定路径,Could not create file

    一:使用:kettle:wind本地MySQL数据到hive的指定路径二:问题:没有root写权限网上说的什么少jar包,我这里不存在这种情况,因为我自己是导入jar包的:mysql-connecto ...

  8. centos7配置Logstash同步Mysql数据到Elasticsearch

    Logstash 是开源的服务器端数据处理管道,能够同时从多个来源采集数据,转换数据,然后将数据发送到您最喜欢的“存储库”中.个人认为这款插件是比较稳定,容易配置的使用Logstash之前,我们得明确 ...

  9. 快速同步mysql数据到redis中

    MYSQL快速同步数据到Redis 举例场景:存储游戏玩家的任务数据,游戏服务器启动时将mysql中玩家的数据同步到redis中. 从MySQL中将数据导入到Redis的Hash结构中.当然,最直接的 ...

随机推荐

  1. 全网求解,用Python处理一个基础题目

    昨天在群里看见一个Python的问题,趁着今天有那么一点点时间,就想把这个题目分享出来,让大家一起解决.毕竟三个臭皮匠,赛过诸葛亮.原始数据如下: 1 origin_lst = [0, 0, 1, 2 ...

  2. Spring框架系列(9) - Spring AOP实现原理详解之AOP切面的实现

    前文,我们分析了Spring IOC的初始化过程和Bean的生命周期等,而Spring AOP也是基于IOC的Bean加载来实现的.本文主要介绍Spring AOP原理解析的切面实现过程(将切面类的所 ...

  3. LEACH分簇算法实现和能量控制算法实现

    一.前言 1.在给定WSN的节点数目(100)前提下,节点随机分布,按照LEACH算法,实现每一轮对WSN的分簇.记录前K轮(k=10)时,网络的分簇情况,即每个节点的角色(簇头或簇成员).标记节点之 ...

  4. Vue生命周期和MVVM框架

    生命周期 组件从开始到结束的全过程 创建阶段:beforeCreate.created 挂载阶段:beforeMount.mounted 更新阶段:beforeUpdate.updated 销毁阶段: ...

  5. VIM编辑器的宏操作

    这两天看到一个小练习,要求如下: 在GVIM下,将下面这张图的内容 改成下面这样 并且指出,要用批量操作的方式,不能一行一行的键入 其实第一反应是利用正则表达式来操作,但是让用正则表达式以外的操作方式 ...

  6. ElementUI嵌套页面及关联增删查改实现

    @ 目录 前言 一.ElementUI如何在原有页面添加另外一个页面并实现关联增删查改? 二.实现步骤 1.ElementUI代码 2.思路:很简单 1.1 首先通过el-row.el-col.el- ...

  7. Thread类的常用方法_sleep和创建多线程程序的第二种方式实现Runnable接口

    public static void sleep(long millis);//使当前正在执行的线程以指定的毫秒数暂停(暂时停止执行). 毫秒数结束后线程继续执行 package com.yang.T ...

  8. HashSet存储自定义数据类型和LinkedHashSet集合

    HashSet存储自定义数据类型 public class Test{ /** * HashSet存储自定义数据类型 * set集合保证元素唯一:存储的元素(String,Integer,Studen ...

  9. 智慧文旅IOC大数据可视化建设方案

    一.建设背景 自2020年以来,疫情对各行各业的都造成了不同程度的影响,对依赖人口消费实现商业价值的文旅行业更是受到了更大的冲击,因此在疫情当下以及科技发达的今天,如何利用科技的手段赋能文旅行业进行数 ...

  10. 技术分享 | Prometheus+Grafana监控MySQL浅析

    GreatSQL社区原创内容未经授权不得随意使用,转载请联系小编并注明来源. 简介 Prometheus 一套开源的监控&报警&时间序列数据库的组合,通常 Kubernetes 中都会 ...