指数分布的分布函数和概率密度函数的推导,牢记指数分布的分布函数为1-e^(-λx)

前言:重在记录,可能出错。

之前推导出了泊松分布的概率公式——泊松分布概率公式的推导,现在推导一下指数分布的分布函数和概率密度函数。

很多人在初学时,只记得指数分布的概率密度函数,e^(-λx),再利用积分计算概率,这是对的,但有人利用积分直接得分布函数,这样就错了。

1. 首先,指数分布描述的是等待事件下一次发生的时间间隔t的概率,分布函数为:

\[\color{red}{F\mathop{{}}\nolimits_{{X}} \left( t \left) =P \left\{ X \le t \left\} =1-P \left\{ X > t \right\} \right. \right. \right. \right. }
\]

求分布函数可以先求\(\color{red}{P \left\{ X > t \right\} }\)

2. 其次,\(\color{red}{P \left\{ X > t \right\} }\)描述的是等待事件下一次发生的时间间隔大于t的概率,换一种说法,即在t时间(t个单位时间)内事件未发生(发生次数为0)的概率。描述一个事件在一段时间内发生次数的概率,恰好是泊松分布。

3.每个单位时间内事件发生次数为0的概率使用泊松分布转换为代数式为

\[\color{red}{P \left\{ X=0 \left\} =\frac{{ \lambda \mathop{{}}\nolimits^{{0}}}}{{0!}}⸳e\mathop{{}}\nolimits^{{- \lambda }}=e\mathop{{}}\nolimits^{{- \lambda }}\right. \right.}
\]

那么‘在t个单位时间内事件发生次数为0的概率’,即

\[\color{red}{P \left\{ X > t \left\} =e\mathop{{}}\nolimits^{{- \lambda t}}\right. \right.}
\]

4. 最后,综上可得,将t替换为x,当x≥0时,指数分布的分布函数为:

\[\color{red}{F\mathop{{}}\nolimits_{{X}} \left( x \left) =P \left\{ X \le x \left\} =1-P \left\{ X > x \left\} =1-e\mathop{{}}\nolimits^{{- \lambda x}}\right. \right. \right. \right. \right. \right. }
\]

当x≥0时,指数分布的概率密度函数为:

\[\color{red}{f\mathop{{}}\nolimits_{{X}} \left( x \left) = \lambda e\mathop{{}}\nolimits^{{- \lambda x}}\right. \right. }
\]

5. 从上述过程来看,指数分布公式里的λ与单位时间下泊松分布的λ相同,不是单位时间下就不同了。以下举例:

例题:公司茶水间饮水机,平均每分钟有一名员工接水并离开。分别以泊松分布和指数分布计算,三分钟没有员工在茶水间饮水机接水并离开的概率。

解:

(1).泊松分布:

\[\begin{array}{*{20}{l}}{E \left( x \left) =3= \lambda \mathop{{}}\nolimits_{{1}}\text{ }\text{ }\text{ }\text{ }\text{ }\text{问}\text{三}\text{分}\text{钟}\text{,}\text{所}\text{以}\text{此}\text{时}\text{期}\text{望}\text{为}3\right. \right. }\\{P \left( x=0 \left) =\frac{{ \lambda \mathop{{}}\nolimits_{{1}}\mathop{{}}\nolimits^{{0}}}}{{0!}}e\mathop{{}}\nolimits^{{- \lambda \mathop{{}}\nolimits_{{1}}}}=e\mathop{{}}\nolimits^{{-3}}\right. \right. }\end{array}
\]

(2).指数分布:

\[{\begin{array}{*{20}{l}}{E \left( t \left) =1=\frac{{1}}{{ \lambda \mathop{{}}\nolimits_{{2}}}}\text{ }\text{ }\text{ }\text{ }\text{ }\text{指}\text{数}\text{分}\text{布}\text{的}\text{期}\text{望}\text{仍}\text{为}1\right. \right. }\\{ \lambda \mathop{{}}\nolimits_{{2}}=1}\\{P \left( \text{t} > 3 \left) ={\mathop{ \int }\nolimits_{{3}}^{{+ \infty }}{ \lambda \mathop{{}}\nolimits_{{2}}e\mathop{{}}\nolimits^{{- \lambda \mathop{{}}\nolimits_{{2}}t}}dt=e\mathop{{}}\nolimits^{{-3}}}}\right. \right. }\end{array}}
\]
三分钟内事件未发生,即事件发生的间隔超过了三分钟

指数分布的分布函数和概率密度函数的推导,牢记指数分布的分布函数为1-e^(-λx)的更多相关文章

  1. PDF的来源——概率密度函数

    //首发于简书,详见原文:https://www.jianshu.com/p/6493edd20d61 你不会还真的以为这是一篇讲怎么做pdf文件,怎么编辑.保存.美化的文章吧? 咳咳,很遗憾告诉你不 ...

  2. rvs产生服从指定分布的随机数 pdf概率密度函数 cdf累计分布函数 ppf 分位点函数

    统计工作中几个常用用法在python统计函数库scipy.stats的使用范例. 正态分布以正态分布的常见需求为例了解scipy.stats的基本使用方法. 1.生成服从指定分布的随机数 norm.r ...

  3. Kattis - heapsoffun Heaps of Fun (概率密度函数+dp)

    题意:有一棵含有n个结点(n<=300)的根树,树上每个结点上的权值是从[0,ai](ai<=1e9)区间内随机的一个实数,问这棵树能形成一个最小堆的概率. 由于结点取值范围是1e9而且是 ...

  4. 高斯分布(Gaussian Distribution)的概率密度函数(probability density function)

    高斯分布(Gaussian Distribution)的概率密度函数(probability density function) 对应于numpy中: numpy.random.normal(loc= ...

  5. 函数的光滑化或正则化 卷积 应用 两个统计独立变量X与Y的和的概率密度函数是X与Y的概率密度函数的卷积

    http://graphics.stanford.edu/courses/cs178/applets/convolution.html Convolution is an operation on t ...

  6. LOJ2267 SDOI2017 龙与地下城 FFT、概率密度函数、Simpson

    传送门 概率论神仙题-- 首先一个暴力做法是设\(f_{i,j}\)表示前\(i\)个骰子摇出点数和为\(j\)的概率,不难发现DP的过程是一个多项式快速幂,FFT优化可以做到\(O(XYlog(XY ...

  7. 使用Excel绘制F分布概率密度函数图表

    使用Excel绘制F分布概率密度函数图表 利用Excel绘制t分布的概率密度函数的相同方式,可以绘制F分布的概率密度函数图表. F分布的概率密度函数如下图所示: 其中:μ为分子自由度,ν为分母自由度 ...

  8. matlab 求已知概率密度函数的随机数生成

    N=10000; %需要随机数的个数 a=zeros(N,1); %存放随机数的数列 n=0; f1=@(t) 1./(1.2*pi*(1+5*(t-7.3).^2)); f2=@(t) 1./(1. ...

  9. 机器学习-LR推导及与SVM的区别

    之前整理过一篇关于逻辑回归的帖子,但是只是简单介绍了一下了LR的基本思想,面试的时候基本用不上,那么这篇帖子就深入理解一下LR的一些知识,希望能够对面试有一定的帮助. 1.逻辑斯谛分布 介绍逻辑斯谛回 ...

  10. R--相关分布函数、统计函数的使用

    分布函数家族: *func()r : 随机分布函数d : 概率密度函数p : 累积分布函数q : 分位数函数 func()表示具体的名称如下表: 例子 #r : 随机分布函数 #d : 概率密度函数 ...

随机推荐

  1. java中的instanceof方法

    本文主要讲述java中的instanceof()方法. 示例代码如下: public class InstanceTest { public static void main(String[] arg ...

  2. java中对象存在形式

    本文主要讲述jvm中对象的存储形式: class Cat{ String name; int age; String color; // 行为 } 依据Cat类创建对象 public class Ob ...

  3. 08-通用Service接口

    MP也为我们提供了Service层的实现,我们只需要编写一个接口,继承IService, 并创建一个接口实现类继承ServiceImpl,即可使用 基本使用 改造前 定义接口 public inter ...

  4. Error: Could not get apiVersions from Kubernetes

    问题 部署pod时遇到问题 # helm install chart.tgz Error: Could not get apiVersions from Kubernetes: unable to r ...

  5. shape {select ...} append ({select ...} RELATE ID TO PARAMETER 0,ID TO PARAMETER 1)

    1.问题描述 最近在写vb.net的时候,碰到了一个有点棘手的问题.就是在vb里面去解决一对多的关系. 对应关系如下,一个合同会对应多个开票. 最简单暴力的方法就是循环查询了,但是这样子肯定不行的.如 ...

  6. JDBC中文乱码问题

    解决JDBC中文数据存入数据库乱码问题 ?useUnicode=true&characterEncoding=utf-8

  7. 我的基于 JamStack 的新博客

    概述 今天心血来潮,介绍一下我的新博客站点 -- https://EWhisper.cn. 我是做基础平台 PaaS 运维和架构的,挺喜欢把工作中学到的新知识写下来.记笔记,突然有一天就抱着「资源共享 ...

  8. appium如何连接多台设备

    我们在做app自动化的时候,若要考虑兼容性问题,需要跑几台设备,要是一台一台的跑比较耗 时,因此需要考虑使用多线程来同时操作多台设备. 1.我们拿两台设备来模拟操作下,使用:adb devices查看 ...

  9. 超级容易理解的函数节流(throttle)

    今天搞了一个简单的写法 话不多说,直接上代码 <!DOCTYPE html> <html lang="en"> <head> <meta ...

  10. Python邮箱推送

    利用python进行邮箱推送可以配和爬虫使用,也可以监控github上面CVE等 一个基于Python的邮箱推送脚本 需要有一个邮箱授权码不知道哪里获取可以百度就不多详细的描述了 成品: # 发送多种 ...