Spring 04: IOC控制反转 + DI依赖注入
Spring中的IOC
一种思想,两种实现方式
IOC (Inversion of Control):控制反转,是一种概念和思想,指由Spring容器完成对象创建和依赖注入
- 核心业务:(a)对象的创建 (b)依赖的注入
2种实现方式
- 基于xml实现IOC
- 基于注解实现IOC
基于xml的IOC在前3篇Spring博客中简单探讨过了,后面将探讨基于注解的IOC
基于注解的IOC
- DI (Dependency Injection):基于注解的IOC被称为DI,即依赖注入, 是IOC思想的一种具体实现方式
- 根据IOC的核心业务即:(a)对象创建,(b)依赖注入,对注解进行分类研究
注解类型
a. 创建对象的注解
包含:创建任意对象的注解 + 创建三层架构各层对象的注解
@Conponent可以创建任意对象
@Controller:专门用来创建控制器对象(Servlet),这种对象可以用来接收用户的请求,可以返回处理结果给客户端
@Service:专门用来创建业务逻辑层对象,负责向下访问数据访问层,并将处理结果返回给界面层
@Repository:专门用来创建数据访问层对象,负责数据库中的CRUD操作
b. 依赖注入的注解
- 包含:负责简单类型注入的注解 + 负责引用类型注入的注解
简单类型的注入
- @Value:用来给简单类型(8 + 1)注入值
引用类型的注入
- @Autowired:使用类型注入值,从整个Bean工厂中搜索同源类型的对象进行注入
- 同源类型可以是如下3种情况
- 1.被注入的属性类型与待注入的数据类型是完全相同的类型
- 2.被注入的属性(可以作为:父类)类型与待注入的数据(可以作为:子类)类型可以是父子类关系
- 3.被注入的属性(可以作为:接口)类型与待注入的数据(可以作为:实现类)类型是可以是接口和实现类的关系
- 同源类型可以是如下3种情况
- @Autowired + @Qualifier:使用名称注入值,从整个Bean工厂中搜索相同名称的对象进行注入
注意
考虑到演示代码的复用性,减少代码冗余,并保证演示的清晰性,放在一起演示的代码:共用实体类 + 共用applicationContext.xml + 共用一个测试类。
不在一起演示的,另建一个新包并重新创建以上内容。
对实体类或配置文件的修改顺序,遵循博文的演示顺序。
- @Conponent + @Value 放在一起演示
- @Autowired:同源类型注入之完全相同类型 + 对应的(@Autowired + @Qualifier)名称注入 放在一起演示
- @Autowired:同源类型注入之父子类型 + 对应的(@Autowired + @Qualifier)名称注入 放在一起演示
- @Controller + @Service + @Repository 先不演示,在改造之前博客(Spring博客集中的Spring02)中的三层项目架构时再演示
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - -- - -
@Conponent注解
实体类
- Student实体类,并对实体类添加@Component注解
package com.example.s01;
import org.springframework.stereotype.Component;
@Component
public class Student {
private String name;
private int age;
public Student() {
System.out.println("Student无参构造方法被执行,实例对象被创建....");
}
@Override
public String toString() {
return "Student{" +
"name='" + name + '\'' +
", age=" + age +
'}';
}
}
applicationContext.xml
- 对要扫描的包,添加包扫描
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd http://www.springframework.org/schema/context https://www.springframework.org/schema/context/spring-context.xsd">
<!-- 添加包扫描 -->
<context:component-scan base-package="com.example.s01"/>
</beans>
测试1
创建实体类对象的时机:和基于xml的IOC一样,当创建Spring容器时,创建实体类对象
具体流程:创建Spring容器时,读取Spring核心配置文件:applicationContext.xml,进行包扫描,对于被扫描到的包,如果包中的实体类添加了@Component注解,则创建实体类对象
package com.example.test;
import com.example.s01.Student;
import org.junit.Test;
import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;
public class TestComponent {
//测试Component注解
@Test
public void testComponent(){
//创建Spring容器
ApplicationContext ac = new ClassPathXmlApplicationContext("s01/applicationContext.xml");
//获取容器中的bean对象
Student student = (Student) ac.getBean("student");
System.out.println(student);
}
}
测试输出1
Student无参构造方法被执行,实例对象被创建....
Student{name='null', age=0}
Process finished with exit code 0
注意
实体类
- 修改注解为@Component("stu")
@Component("stu")
public class Student {
//...
}
测试2
- 在获取Spring容器中的对象时根据指定的名称:"stu"来获取。注解未做特殊指定时,则遵循用类名的驼峰命名法来取
public class TestComponent {
//测试Component注解
@Test
public void testComponent(){
//创建Spring容器
ApplicationContext ac = new ClassPathXmlApplicationContext("s01/applicationContext.xml");
//获取容器中的bean对象
Student student = (Student) ac.getBean("stu");
System.out.println(student);
}
}
测试输出2
- 与测试输出1完全相同,不再赘述
@value注解
实体类
- 为Student实体类的简单类型的属性添加@Value注解
@Component("stu")
public class Student {
@Value("荷包蛋")
private String name;
@Value("20")
private int age;
//....
}
测试3
- 和测试1完全相同,不再赘述
测试输出3
Student无参构造方法被执行,实例对象被创建....
Student{name='荷包蛋', age=20}
Process finished with exit code 0
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - -- - -
@Autowired注解
同源类型注入3种情况之一:完全相同的类型的注入
实体类
- 在新的包下构建的两个实体类:School实体类 + Student实体类
- School实体类
package com.example.s02;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.stereotype.Component;
@Component
public class School {
@Value("nefu")
private String name;
@Value("哈尔滨")
private String address;
public School() {
System.out.println("School无参构造方法执行,实例对象被创建....");
}
@Override
public String toString() {
return "School{" +
"name='" + name + '\'' +
", address='" + address + '\'' +
'}';
}
}
- Student实体类新增对School实例对象的引用,其他内容和之前的Student类相同
package com.example.s02;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.stereotype.Component;
@Component
public class Student {
//.....
@Autowired
private School school;
//.....
}
applicationContext.xml
- 添加包扫描,头文件不再赘述
<!-- 添加包扫描 -->
<context:component-scan base-package="com.example.s02"/>
测试4
package com.example.test;
import org.junit.Test;
import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;
public class TestAutowired {
//测试同源注入:完全相同的类型
@Test
public void testAutowired(){
//创建Spring容器
ApplicationContext ac = new ClassPathXmlApplicationContext("s02/applicationContext.xml");
//从容器中获取Student实例对象
System.out.println("学生对象: " + ac.getBean("student"));
}
}
测试输出4
School无参构造方法执行,实例对象被创建....
Student无参构造方法被执行,实例对象被创建....
学生对象: Student{name='荷包蛋', age=20, school=School{name='nefu', address='哈尔滨'}}
Process finished with exit code 0
对应的名称注入
实体类
- School实体类:将School的@Component注解改为@Component("theSchool")
@Component("theSchool")
public class School {
//.....
}
- Student实体类:新增@Qualifier注解,并必须在其后指定Bean工厂中已经注册的实体类对象的名称(类名的驼峰命名或自定义名称)
@Component
public class Student {
//.....
@Autowired
@Qualifier("theSchool")
private School school;
//.....
}
测试5和测试输出5
- 分别和测试4和测试输出4完全相同,不再赘述
注意
- 只使用@Qualifier注解标签且后面跟的Bean工厂中注册的实体类对象的名称正确时,无法完成依赖名称注册,用名称进行注入时,这两个注解标签都要出现
实体类
- Student实体类
@Component
public class Student {
//.....
@Qualifier("theSchool")
private School school;
//.....
}
测试6
- 与测试4完全相同,不再赘述
测试输出6
- 没有报错,但是根据名称进行依赖注入的操作并没有真正将引用类型的数据注入到Student实例中,引用类型school为null
School无参构造方法执行,实例对象被创建....
Student无参构造方法被执行,实例对象被创建....
学生对象: Student{name='荷包蛋', age=20, school=null}
Process finished with exit code 0
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - -- - -
@Autowired注解
同源类型注入3种情况之二:父子类型的注入
实体类
构建一个新的实体类包,含有3个实体类:SubSchool,School,Student
新增实体类SubSchool,为School类的子类
package com.example.s03;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.stereotype.Component;
@Component
public class SubSchool extends School{
@Value("nefu附小")
private String name;
@Value("香坊区")
private String address;
@Override
public String toString() {
return "SubSchool{" +
"name='" + name + '\'' +
", address='" + address + '\'' +
'}';
}
public SubSchool() {
System.out.println("SubSchool无参构造方法被执行,实例对象被创建....");
}
}
- Student实体类内容不变
package com.example.s03;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.stereotype.Component;
@Component
public class Student {
//......
@Autowired
private School school;
//......
}
- School实体类内容不变
package com.example.s03;
import org.springframework.stereotype.Component;
@Component
public class SubSchool extends School{
//......
}
applicationContext.xml
- 添加包扫描
<!-- 添加包扫描 -->
<context:component-scan base-package="com.example.s03"/>
测试7
package com.example.test;
import org.junit.Test;
import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;
public class TestAutowiredExtend {
//测试同源类型注入:父子类型
@Test
public void testAutowiredExtend(){
//创建Spring容器
ApplicationContext ac = new ClassPathXmlApplicationContext("s03/applicationContext.xml");
//从容器中获取Student实例
System.out.printf("Student实例: " + ac.getBean("student"));
}
}
测试输出7
- 为什么"School无参构造方法执行,实例对象被创建...."被输出2次?
- 原因:一次是构建School对象时,一次在构建SubSchool对象时(子类构造方法中调用父类无参构造方法)
School无参构造方法执行,实例对象被创建....
Student无参构造方法被执行,实例对象被创建....
School无参构造方法执行,实例对象被创建....
SubSchool无参构造方法被执行,实例对象被创建....
Student实例: Student{name='荷包蛋', age=20, school=School{name='nefu', address='哈尔滨'}}
Process finished with exit code 0
注意
- 为什么SubSchool和School实体类对象都被注册了,在上述测试中,只是School的实体类对象被注入Student对象?
- 原因:在同源类型的注入中,若进行父子类型的依赖注入,不是按照名称注入时,会按照注册的实体类对象的名称二次选择
- 二次选择的原则:注册的实体类对象的名称和待注入的目标属性名称相同的,优先被选择为注入数据
实体类
- School修改为
@Component("schoolFu")
public class School {
//......
}
- SubSchool修改为
@Component("school")
public class SubSchool extends School{
//......
}
测试8
- 测试7完全相同,不再赘述
测试输出8
- 此时被注入到Student实例对象中的是SubSchool实例对象
School无参构造方法执行,实例对象被创建....
Student无参构造方法被执行,实例对象被创建....
School无参构造方法执行,实例对象被创建....
SubSchool无参构造方法被执行,实例对象被创建....
Student实例: Student{name='荷包蛋', age=20, school=SubSchool{name='nefu附小', address='香坊区'}}
Process finished with exit code 0
对应的名称注入
实体类
- 为Student实体类新增注解@Qualifier("schoolFu")
@Component
public class Student {
@Autowired
@Qualifier("schoolFu")
private School school;
//......
}
测试9
- 和测试7完全相同,不再赘述
测试输出9
- 此时被注入到Student实例对象中的是School实例对象,因为@Qualifier("schoolFu")指定的注入数据和School实体类的注册类型相同,根据指定名称完成注入
School无参构造方法执行,实例对象被创建....
Student无参构造方法被执行,实例对象被创建....
School无参构造方法执行,实例对象被创建....
SubSchool无参构造方法被执行,实例对象被创建....
Student实例: Student{name='荷包蛋', age=20, school=School{name='nefu', address='哈尔滨'}}
Process finished with exit code 0
Spring 04: IOC控制反转 + DI依赖注入的更多相关文章
- Spring的IOC控制反转和依赖注入-重点-spring核心之一
IoC:Inverse of Control(控制反转): 读作"反转控制",更好理解,不是什么技术,而是一种设计思想,好比于MVC.就是将原本在程序中手动创建对象的控制权,交由S ...
- laravel服务容器(IOC控制反转,DI依赖注入),服务提供者,门脸模式
laravel的核心思想: 服务容器: 容器:就是装东西的,laravel就是一个个的对象 放入:叫绑定 拿出:解析 使用容器的目的:这里面讲到的是IOC控制反转,主要是靠第三方来处理具体依赖关系的解 ...
- Spring专题2: DI,IOC 控制反转和依赖注入
合集目录 Spring专题2: DI,IOC 控制反转和依赖注入 https://docs.spring.io/spring/docs/2.5.x/reference/aop.html https:/ ...
- 轻松了解Spring中的控制反转和依赖注入(二)
紧接上一篇文章<轻松了解Spring中的控制反转和依赖注入>讲解了SpringIOC和DI的基本概念,这篇文章我们模拟一下SpringIOC的工作机制,使我们更加深刻的理解其中的工作. 类 ...
- Spring中的控制反转和依赖注入
Spring中的控制反转和依赖注入 原文链接:https://www.cnblogs.com/xxzhuang/p/5948902.html 我们回顾一下计算机的发展史,从最初第一台计算机的占地面积达 ...
- [转载]Spring下IOC容器和DI(依赖注入) @Bean及@Autowired
Spring下IOC容器和DI(依赖注入) @Bean及@Autowired自动装配 bean是什么 bean在spring中可以理解为一个对象.理解这个对象需要换一种角度,即可将spring看做一门 ...
- 轻松了解Spring中的控制反转和依赖注入(一)
我们回顾一下计算机的发展史,从最初第一台计算机的占地面积达170平方米,重达30吨,到现如今的个人笔记本,事物更加轻量功能却更加丰富,这是事物发展过程中的一个趋势,在技术领域中同样也是如此,企业级Ja ...
- Java Web实现IOC控制反转之依赖注入
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心. 控制反转一般分为两种类型,依赖注入 ...
- Spring框架之控制反转和依赖注入
学Spring框架必须理解控制反转和依赖注入.下面各自举一个例子,来说明控制反转和依赖注入. IOC(控制反转):应用本身创建和维护的依赖对象:现在交由外部容器(Spring)来创建和维护:这个控制权 ...
随机推荐
- c++ 超长整数加法 高精度加法
c++ 超长整数加法 高精度加法 实现思路 不能直接使用加法,因为int和long long都已超出最大数据表示范围 数据读入采用string类型,读入后将数据的每一位存储到vector中 vecto ...
- Django——表单
一.前言 看了下教程,以为表单很简单呢,结果搞了一两个钟才弄懂,哈哈哈,所以说不要小瞧每一件事. 先说明下HTTP请求: HTTP协议以"请求-回复"的方式工作.客户发送请求时,可 ...
- CVE-2022-30190 Follina Office RCE分析【附自定义word钓鱼模板POC】
昨天看了下'Follina' MS-MSDT n-day Microsoft Office RCE 这个漏洞,修改了下chvancooten的脚本,实现可以自定义word模板,便于实战中钓鱼使用,自己 ...
- 南京大学 静态软件分析(static program analyzes)-- introduction 学习笔记
一.Programming Languages体系 静态程序分析是编程语言中应用层面下的一个细分领域,它是一个非常重要的核心内容. 在理论部分,考虑的是如何设计一个语言的语法和语义,如何设计语言的类型 ...
- 使用Node.js还可以发邮件
前言 今天,我们给大家开发一个小效果.篇幅比较短,主要给大家展示效果.实战 首先我们初始化一个Node项目 npm init -y 创建一个app.js文件 'use strict'; const n ...
- 从开发一款基于Vue技术栈的全栈热重载生产环境脚手架,我学到了什么
浏览文章前 这一期,我分享给大家三点看源码的小技巧,这也是从别的大佬那总结的. 被反复使用的代码 这样的代码是一个软件的重点函数,一个大神的写法有很多精华值得学习. 穿越时间的代码 如果一段代码10年 ...
- git stash 的一次惊心动魄的误删操作
git stash 的一次惊心动魄的误删操作 简介:行走在互联网最低端的小熊 问题--源起: 小熊和所有混迹在互联网中的开发一样,公司里面用git来管理项目,由于可能经常有几个问题要开发,要频繁在多分 ...
- RPA视频教程
匠厂出品,必属精品 Uipath中文社区qq交流群:465630324 uipath中文交流社区:https://uipathbbs.comRPA之家qq群:465620839 第一课--UiPa ...
- 几百行代码实现一个 JSON 解析器
前言 之前在写 gscript时我就在想有没有利用编译原理实现一个更实际工具?毕竟真写一个语言的难度不低,并且也很难真的应用起来. 一次无意间看到有人提起 JSON 解析器,这类工具充斥着我们的日常开 ...
- 霍普菲尔得神经网络(Hopfield Neural Network)
设计一个反馈网络存储下列目标平衡点: T = [ 1 -1; -1 1 ]; 并用6组任意随机初始列矢量,包括一组在目标平衡点连线的垂直平分线上的一点作为输入矢量对所设计的网络的平衡点进行测试,观 ...