项目简介

rate-limit 是一个为 java 设计的渐进式限流工具。

目的是为了深入学习和使用限流,后续将会持续迭代。

特性

  • 渐进式实现

  • 支持独立于 spring 使用

  • 支持整合 spring

  • 支持整合 spring-boot

  • 内置多种限流策略

快速开始

需求

  • jdk 1.7

  • maven 3.x+

maven 导入

<dependency>
<groupId>com.github.houbb</groupId>
<artifactId>rate-limit-core</artifactId>
<version>1.1.0</version>
</dependency>

入门例子

方法定义

@RateLimit 限流注解放在方法上,指定对应的限制频率。

也可以定义在类上,默认下面的所有方法生效。方法上的优先级高于类。

属性 说明 默认值
value 方法访问一次消耗的令牌数 1
timeUnit 时间单位 TimeUnit.SECONDS
interval 时间间隔 60
count 可调用次数 1000
enable 是否启用 true

默认为 60S 内,可以调用 1000 次。

public class UserService {

    @RateLimit(interval = 2, count = 5)
public void limitCount() {
log.info("{}", Thread.currentThread().getName());
} }

这个例子中我们 2S 内最多调用 5 次。

代码测试

RateLimitProxy.getProxy(xxx) 通过字节码获取方法对应的方法代理。

@Test(expected = RateLimitRuntimeException.class)
public void limitCountErrorTest() {
UserService userService = RateLimitProxy.getProxy(new UserService());
for(int i = 0; i < 3; i++) {
userService.limitCount();
}
}

当调用超出限制时,默认抛出 RateLimitRuntimeException 异常。

这里默认使用的是令牌桶算法,所以会出现异常。

重复注解 @RateLimits

有时候我们希望同时做多个的限制:

(1)一分钟不超过 10 次

(2)一小时不超过 30 次

为了支持多个配置,我们引入了新的注解 @RateLimits,可以指定一个 @RateLimit 数组。

方法上同时使用 @RateLimits + @RateLimit 是可以同时生效的,不过为了简单,一般不建议混合使用。

@RateLimits({@RateLimit(interval = 2, count = 5)})
public void limitCount() {
//...
}

指定引导类

RateLimitProxy.getProxy(new UserService());

等价于

RateLimitProxy.getProxy(new UserService(), RateLimitBs.newInstance());

下面我们来一起看一下 RateLimitBs 引导类。

引导类

RateLimitBs 作为引导类,便于用户自定义配置。

方法 说明 默认值
rateLimit 限流策略 RateLimits.tokenBucket() 令牌桶算法
timer 时间策略 Timers.system() 系统时间
cacheService 缓存策略 CommonCacheServiceMap 基于本地 map 的缓存策略
cacheKeyNamespace 缓存KEY命名空间 RATE-LIMIT 避免不同的应用,命名冲突。
configService 限制配置策略 RateLimitConfigService 默认基于方法上的注解
tokenService 身份标识策略 RateLimitTokenService 默认基于 IP
methodService 方法标识策略 RateLimitMethodService 默认基于方法名+参数类型
rejectListener 拒绝策略 RateLimitRejectListenerException 限流时抛出异常

其中 rateLimit 内置 RateLimits 工具中的策略如下:

方法 说明
fixedWindow() 固定窗口
slideWindow(int windowNum) 滑动窗口,可指定窗口大小
slideWindow() 滑动窗口,默认为 10
slideWindowQueue() 滑动窗口,基于队列的实现
leakyBucket() 漏桶算法
tokenBucket() 令牌桶算法

配置建议

  1. 分布式系统,cacheService 建议使用基于 redis 的集中式缓存策略。

  2. configService 如果想更加灵活,可以基于数据库的配置查询

RateLimitBs 引导类

RateLimitBs 默认配置如下:

RateLimitBs.newInstance()
.timer(Timers.system())
.methodService(new RateLimitMethodService())
.tokenService(new RateLimitTokenService())
.rejectListener(new RateLimitRejectListenerException())
.configService(new RateLimitConfigService())
.cacheService(new CommonCacheServiceMap())
.rateLimit(RateLimits.tokenBucket())
.cacheKeyNamespace(RateLimitConst.DEFAULT_CACHE_KEY_NAMESPACE);

spring 整合

maven 引入

<dependency>
<groupId>com.github.houbb</groupId>
<artifactId>rate-limit-spring</artifactId>
<version>1.1.0</version>
</dependency>

类定义

方法

和上面使用类似,直接在方法上声明 @RateLimit 注解即可。

@Service
public class UserService { private static final Log log = LogFactory.getLog(UserService.class); @RateLimit(interval = 2, count = 5)
public void limitCount() {
log.info("{}", Thread.currentThread().getName());
} }

配置

通过 @EnableRateLimit 声明启用限流。

@Configuration
@ComponentScan("com.github.houbb.rate.limit.test.core")
@EnableRateLimit
public class SpringConfig { }

@EnableRateLimit 的属性配置和 RateLimitBs 属性是以一一对应的。

方法 说明 默认值
rateLimit 限流策略 令牌桶算法
timer 时间策略 系统时间
cacheService 缓存策略 基于本地 map 的缓存策略
cacheKeyNamespace 缓存KEY命名空间 RATE-LIMIT 避免不同的应用,命名冲突。
configService 限制配置策略 默认基于方法上的注解
tokenService 身份标识策略 默认基于 IP
methodService 方法标识策略 默认基于方法名+参数类型
rejectListener 拒绝策略 限流时抛出异常

这里的属性值,都是对应的 spring bean 名称,支持用户自定义。

spring-boot 整合

maven 引入

<dependency>
<groupId>com.github.houbb</groupId>
<artifactId>rate-limit-springboot-starter</artifactId>
<version>1.1.0</version>
</dependency>

使用

其他和 spring 保持一致。

缓存相关工具

cache: 手写渐进式 redis

common-cache: 通用缓存标准定义

redis-config: 兼容各种常见的 redis 配置模式

lock: 开箱即用的分布式锁

resubmit: 防重复提交

rate-limit: 限流

rate-limit 一款 java 开源渐进式分布式限流框架使用介绍的更多相关文章

  1. 阿里巴巴的26款Java开源项目

    阿里巴巴的26款Java开源项目 开源展示了人类共同协作,成果分享的魅力.没有任何一家网络公司可以不使用开源技术,仅靠自身技术发展起来.“取之于开源,用之于开源,才能促进开源的良性发展”,阿里巴巴各个 ...

  2. 分布式限流组件-基于Redis的注解支持的Ratelimiter

    原文:https://juejin.im/entry/5bd491c85188255ac2629bef?utm_source=coffeephp.com 在分布式领域,我们难免会遇到并发量突增,对后端 ...

  3. Redis实现的分布式锁和分布式限流

    随着现在分布式越来越普遍,分布式锁也十分常用,我的上一篇文章解释了使用zookeeper实现分布式锁(传送门),本次咱们说一下如何用Redis实现分布式锁和分布限流. Redis有个事务锁,就是如下的 ...

  4. 限流(三)Redis + lua分布式限流

    一.简介 1)分布式限流 如果是单实例项目,我们使用Guava这样的轻便又高性能的堆缓存来处理限流.但是当项目发展为多实例了以后呢?这时候我们就需要采用分布式限流的方式,分布式限流可以以redis + ...

  5. Springboot分布式限流实践

    高并发访问时,缓存.限流.降级往往是系统的利剑,在互联网蓬勃发展的时期,经常会面临因用户暴涨导致的请求不可用的情况,甚至引发连锁反映导致整个系统崩溃.这个时候常见的解决方案之一就是限流了,当请求达到一 ...

  6. 【分布式架构】--- 基于Redis组件的特性,实现一个分布式限流

    分布式---基于Redis进行接口IP限流 场景 为了防止我们的接口被人恶意访问,比如有人通过JMeter工具频繁访问我们的接口,导致接口响应变慢甚至崩溃,所以我们需要对一些特定的接口进行IP限流,即 ...

  7. Sentinel整合Dubbo限流实战(分布式限流)

    之前我们了解了 Sentinel 集成 SpringBoot实现限流,也探讨了Sentinel的限流基本原理,那么接下去我们来学习一下Sentinel整合Dubbo及 Nacos 实现动态数据源的限流 ...

  8. 基于kubernetes的分布式限流

    做为一个数据上报系统,随着接入量越来越大,由于 API 接口无法控制调用方的行为,因此当遇到瞬时请求量激增时,会导致接口占用过多服务器资源,使得其他请求响应速度降低或是超时,更有甚者可能导致服务器宕机 ...

  9. 国内最火的10款Java开源项目,都是国人开发,CMS居多

    原文链接:https://www.cnblogs.com/jimcsharp/p/8266954.html 国内的开源环境已经相当好,但是国内开发注重是应用,创新有但不多,从榜单可以看出,专门搞技术的 ...

  10. 推荐十款java开源中文分词组件

    1:Elasticsearch的开源中文分词器 IK Analysis(Star:2471) IK中文分词器在Elasticsearch上的使用.原生IK中文分词是从文件系统中读取词典,es-ik本身 ...

随机推荐

  1. service的dns记录

    当您创建一个 Service 时,Kubernetes 为其创建一个对应的 DNS 条目.该 DNS 记录的格式为 ..svc.cluster.local,也就是说,如果在容器中只使用 ,其DNS将解 ...

  2. 利用msg_msg实现任意地址读写

    利用msg_msg实现任意地址读写 msgsnd和msgrcv的源码分析 内核通过msgsnd和msgrcv来进行IPC通信.内核消息分为两个部分,一个是消息头msg_msg(0x30),以及后面跟着 ...

  3. TCP和UDP有啥区别?

    TCP全称: Transmission Control Protocol中文名: 传输控制协议解释: 是一种面向连接的.可靠的.基于字节流的传输层通信协议,由IETF的RFC 793定义.用途:TCP ...

  4. 《吐血整理》高级系列教程-吃透Fiddler抓包教程(25)-Fiddler如何优雅地在正式和测试环境之间来回切换-下篇

    1.简介 在开发或者测试的过程中,由于项目环境比较多,往往需要来来回回地反复切换,那么如何优雅地切换呢?宏哥今天介绍几种方法供小伙伴或者童鞋们进行参考. 2.实际工作场景 2.1问题场景 (1)已发布 ...

  5. netstat -lnp |grep XXX后不显示进程

    netstat -lnp |grep XXX后不显示进程,不一定是没有进程,可能是这个命令不好使,换成 ps -ef | grep XXX

  6. Python 3.12 目标:还可以更快!

    按照发布计划,Python 3.11.0 将于 2022 年 10 月 24 日发布. 据测试,3.11 相比于 3.10,将会有 10-60% 的性能提升,这个成果主要归功于"Faster ...

  7. vulnhub靶场之THE PLANETS: EARTH

    准备: 攻击机:虚拟机kali.本机win10. 靶机:THE PLANETS: EARTH,网段地址我这里设置的桥接,所以与本机电脑在同一网段,下载地址:https://download.vulnh ...

  8. 修改端口号还是无法启动第二个tomcat的原因

    问题:我的服务器是Tomcat7.0.20,修改完所有端口之后(shutdown端口.http端口.https端口.ajp端口),启动一个就不能启动另一个. 两 个startup.bat最前面加上一句 ...

  9. [题解] Atcoder Regular Contest ARC 151 A B C D E 题解

    点我看题 昨天刚打的ARC,题目质量还是不错的. A - Equal Hamming Distances 对于一个位置i,如果\(S_i=T_i\),那么不管\(U\)的这个位置填什么,对到\(S\) ...

  10. 开源数字基础设施 项目 -- Speckle

    [Speckle](https://speckle.systems/)是用于 3D 设计的任何东西的开源数字基础设施.处理软件孤岛.实时协作.数据管理.版本控制和自动化之间的互操作性.致力于构建一个开 ...