论文信息

论文标题:MaskGAE: Masked Graph Modeling Meets Graph Autoencoders
论文作者:Jintang Li, Ruofan Wu, Wangbin Sun, Liang Chen, Sheng Tian......
论文来源:2022,arXiv
论文地址:download 
论文代码:download

1 Introduction

  MAE 在图上的应用——2022 最潮的方法。

2 Related work and Motivation

2.1 GAE

  GAEs采用了经典的编码器-解码器框架,旨在通过优化以下二进制交叉熵损失,从编码图的低维表示中进行解码:

    $\mathcal{L}_{\mathrm{GAEs}}=-\left(\frac{1}{\left|\mathcal{E}^{+}\right|} \sum\limits _{(u, v) \in \mathcal{E}^{+}} \log h_{\omega}\left(z_{u}, z_{v}\right)+\frac{1}{\left|\mathcal{E}^{-}\right|} \sum\limits _{\left(u^{\prime}, v^{\prime}\right) \in \mathcal{E}^{-}} \log \left(1-h_{\omega}\left(z_{u^{\prime}}, z_{v^{\prime}}\right)\right)\right)$

  其中,$\mathcal{z}$ 代表低维隐表示,$f_{\theta}$ 代表参数为  $\theta$ 的 GNN encoder,$h_{\omega}$ 代表参数为  $\omega$ 的 GNN decoder,$\mathcal{E}^{+}$ 代表  positive edges ,$\mathcal{E}^{-}$ 代表 negative edges 。

2.2 Motivation

  按照互信息的思想:希望最大化 k-hop 节点对子图之间的一致性,但是伴随着 $K$ 值变大,过平滑的问题越发明显,此时子图大小对节点表示的学习不利。因此有:

  Proposition 1:
  

  分析了一堆废话................

  后面呢,必然出现解决过平滑的策略。

  Recall:解决过平湖的策略

    • 残差;
    • 谱图理论;
    • 多尺度信息;
    • 边删除;

3 Method:MaskGAE

  我们提出了 MGM 代理任务的 MaskGAE 框架:

  

  出发点:MGM

    $\mathcal{G}_{\text {mask }} \cup   \mathcal{G}_{\text {vis }}=\mathcal{G}$

    $\mathcal{G}_{\text {mask }}=   \left(\mathcal{E}_{\text {mask }}, \mathcal{V}\right)$

3.1 Masking strategy

Edge-wise random masking $(\mathcal{T}_{\text {edge }}$

    $\mathcal{E}_{\text {mask }} \sim \operatorname{Bernoulli}(p)$

Path-wise random masking $(\mathcal{T}_{\text {path}}$

    $\mathcal{E}_{\text {mask }} \sim \operatorname{Random} \operatorname{Walk}\left(\mathcal{R}, n_{\text {walk }}, l_{\text {walk }}\right)$

  其中,$\mathcal{R} \subseteq \mathcal{V}$ 是从图中采样的一组根节点,$n_{\text {walk }}$ 为每个节点的行走次数,$l_{\text {walk }}$ 为行走长度。

  在这里,我们遵循度分布,抽样了一个节点的子集(例如,50%),没有替换作为根节点 $\mathcal{R}$。这样的采样也可以防止图中存在的潜在的长尾偏差(即,更多的屏蔽边是那些属于高度节点的边)。

3.2 Encoder

  • GCN Encoder
  • SAGE Encoder
  • GAT Encoder

3.2 Decoder

Structure decoder

    $​h_{\omega}\left(z_{i}, z_{j}\right)=\operatorname{Sigmoid}\left(z_{i}^{\mathrm{T}} z_{j}\right)$

    $​h_{\omega}\left(z_{i}, z_{j}\right)=\operatorname{Sigmoid}\left(\operatorname{MLP}\left(z_{i} \circ z_{j}\right)\right)$

Degree decoder

    $g_{\phi}\left(z_{v}\right)=\operatorname{MLP}\left(z_{v}\right)$

3.3 Learning objective

  损失函数包括:

    • Reconstruction loss:计算的是掩码边 $\mathcal{E}^{+}=\mathcal{E}_{\text {mask }}$   的重构损失;
    • Regression loss:衡量的是节点度的预测与掩蔽图中原始节点度的匹配程度:

      $\mathcal{L}_{\mathrm{deg}}=\frac{1}{|\mathcal{V}|} \sum\limits _{v \in \mathcal{V}}\left\|g_{\phi}\left(z_{v}\right)-\operatorname{deg}_{\text {mask }}(v)\right\|_{F}^{2}$

  其中,$\operatorname{deg}_{\text {mask }}$ 代表的是掩码图 $\mathcal{G}_{\text {mask }}$ 的节点度。

  因此,总体损失为:

    $\mathcal{L}=\mathcal{L}_{\mathrm{GAEs}}+\alpha \mathcal{L}_{\mathrm{deg}}$

4 Experiments

Link prediction

  

node classifification 
  

5 Conclusion

  在这项工作中,我们首次研究了掩蔽图建模(MGM),并提出了MaskGAE,一个基于理论基础的自我监督学习框架,以 MGM 作为一个有原则的借口任务。我们的工作在理论上是基于以下理由:(i)气体本质上是对比学习,使与链接边相关的配对子图视图之间的互信息最大化;(ii)MGM可以有利于互信息最大化,因为掩蔽显著减少了两个子图视图之间的冗余。特别是,我们还提出了一种路径掩蔽策略,以促进米高梅的任务。在我们的实验中,MaskGAE 比 GAE 表现出显著改善的性能,并且在链路预测和节点分类基准上与强基线相当或更好。
 

论文解读(MaskGAE)《MaskGAE: Masked Graph Modeling Meets Graph Autoencoders》的更多相关文章

  1. 论文解读(GraphDA)《Data Augmentation for Deep Graph Learning: A Survey》

    论文信息 论文标题:Data Augmentation for Deep Graph Learning: A Survey论文作者:Kaize Ding, Zhe Xu, Hanghang Tong, ...

  2. 论文解读(SUGRL)《Simple Unsupervised Graph Representation Learning》

    Paper Information Title:Simple Unsupervised Graph Representation LearningAuthors: Yujie Mo.Liang Pen ...

  3. 论文解读(GraRep)《GraRep: Learning Graph Representations with Global Structural Information》

    论文题目:<GraRep: Learning Graph Representations with Global Structural Information>发表时间:  CIKM论文作 ...

  4. 论文解读(MCGC)《Multi-view Contrastive Graph Clustering》

    论文信息 论文标题:Multi-view Contrastive Graph Clustering论文作者:Erlin Pan.Zhao Kang论文来源:2021, NeurIPS论文地址:down ...

  5. 论文解读(CGC)《CGC: Contrastive Graph Clustering for Community Detection and Tracking》

    论文信息 论文标题:CGC: Contrastive Graph Clustering for Community Detection and Tracking论文作者:Namyong Park, R ...

  6. 论文解读(GROC)《Towards Robust Graph Contrastive Learning》

    论文信息 论文标题:Towards Robust Graph Contrastive Learning论文作者:Nikola Jovanović, Zhao Meng, Lukas Faber, Ro ...

  7. 论文解读(DAGNN)《Towards Deeper Graph Neural Networks》

    论文信息 论文标题:Towards Deeper Graph Neural Networks论文作者:Meng Liu, Hongyang Gao, Shuiwang Ji论文来源:2020, KDD ...

  8. 论文解读(SCGC))《Simple Contrastive Graph Clustering》

    论文信息 论文标题:Simple Contrastive Graph Clustering论文作者:Yue Liu, Xihong Yang, Sihang Zhou, Xinwang Liu论文来源 ...

  9. 论文解读(Geom-GCN)《Geom-GCN: Geometric Graph Convolutional Networks》

    Paper Information Title:Geom-GCN: Geometric Graph Convolutional NetworksAuthors:Hongbin Pei, Bingzhe ...

随机推荐

  1. C#/VB.NET 在Excel单元格中应用多种字体格式

    在Excel中,可对单元格中的字符串设置多种不同样式,通常只需要获取到单元格直接设置样式即可,该方法设置的样式会应用于该单元格中的所有字符.如果需要对单元格中某些字符设置样式,则可以参考本文中的方法. ...

  2. 流量录制回放工具jvm-sandbox-repeater入门篇——录制和回放

    在上一篇文章中,把repeater服务部署介绍清楚了,详细可见:流量录制回放工具jvm-sandbox-repeater入门篇--服务部署 今天在基于上篇内容基础上,再来分享下流量录制和回放的相关内容 ...

  3. 关键字 global和nonlocal

    globale 表示从全局把一个变量(比如a)引入局部,后面的变量全是此变量a 使用   globale 变量名 # 全局变量一般是不能随意的修改的 # a = 10 # def func(): # ...

  4. 石油储运生产 2D 可视化,组态应用赋能工业智慧发展

    前言 当前,国际油价低位徘徊导致各国石油化工行业投资大幅缩减,石油化工建设行业竞争环境日趋严峻,施工企业的利润空间也被不断压缩.内外交困的环境下,促使企业采取更有效的管理手段来提高效率和降低成本.石油 ...

  5. VMware虚拟机中安装Linux操作系统(ubuntu)

    一.准备工作: 1.下载VMware虚拟机 下载地址:https://www.vmware.com/cn/products/workstation-pro/workstation-pro-evalua ...

  6. Oracle中通过逗号分割字符串并转换成多行

    通过逗号对字符串字段进行分割,并返回多行,通过使用regexp_substr()函数实现. SQL示例: select regexp_substr(q.nums, '[^,]+', 1, rownum ...

  7. String 为什么不可变?

    转载来源:String为什么不可变 今天来分享一道群友去阿里云面试遇到的 Java 基础面试真题:"String.StringBuffer.StringBuilder 的区别?String ...

  8. Java包机制和JavaDoc

    目录 包机制 JavaDoc 视频课程 包机制 包的本质就是文件夹 为了更好的组织类, Java提供了包机制, 用于区别类名的命名空间, 使项目看起来更加整洁 一般公司庸域名倒置作为包名 为了能够使用 ...

  9. Linux系统下运行.sh文件

    在Linux系统下运行.sh文件有两种方法,比如我在root目录下有个vip666.sh文件 #chmod +x *.sh的文件名 #./*.sh的文件名 第一种(这种办法需要用chmod使得文件具备 ...

  10. tf.data(二) —— 并行化 tf.data.Dataset 生成器

    在处理大规模数据时,数据无法全部载入内存,我们通常用两个选项 使用tfrecords 使用 tf.data.Dataset.from_generator() tfrecords的并行化使用前文已经有过 ...