论文解读(MaskGAE)《MaskGAE: Masked Graph Modeling Meets Graph Autoencoders》
论文信息
论文标题:MaskGAE: Masked Graph Modeling Meets Graph Autoencoders
论文作者:Jintang Li, Ruofan Wu, Wangbin Sun, Liang Chen, Sheng Tian......
论文来源:2022,arXiv
论文地址:download
论文代码:download
1 Introduction
MAE 在图上的应用——2022 最潮的方法。
2 Related work and Motivation
2.1 GAE
GAEs采用了经典的编码器-解码器框架,旨在通过优化以下二进制交叉熵损失,从编码图的低维表示中进行解码:
$\mathcal{L}_{\mathrm{GAEs}}=-\left(\frac{1}{\left|\mathcal{E}^{+}\right|} \sum\limits _{(u, v) \in \mathcal{E}^{+}} \log h_{\omega}\left(z_{u}, z_{v}\right)+\frac{1}{\left|\mathcal{E}^{-}\right|} \sum\limits _{\left(u^{\prime}, v^{\prime}\right) \in \mathcal{E}^{-}} \log \left(1-h_{\omega}\left(z_{u^{\prime}}, z_{v^{\prime}}\right)\right)\right)$
其中,$\mathcal{z}$ 代表低维隐表示,$f_{\theta}$ 代表参数为 $\theta$ 的 GNN encoder,$h_{\omega}$ 代表参数为 $\omega$ 的 GNN decoder,$\mathcal{E}^{+}$ 代表 positive edges ,$\mathcal{E}^{-}$ 代表 negative edges 。
2.2 Motivation
按照互信息的思想:希望最大化 k-hop 节点对子图之间的一致性,但是伴随着 $K$ 值变大,过平滑的问题越发明显,此时子图大小对节点表示的学习不利。因此有:
分析了一堆废话................
后面呢,必然出现解决过平滑的策略。
Recall:解决过平湖的策略
- 残差;
- 谱图理论;
- 多尺度信息;
- 边删除;
3 Method:MaskGAE

出发点:MGM
$\mathcal{G}_{\text {mask }} \cup \mathcal{G}_{\text {vis }}=\mathcal{G}$
$\mathcal{G}_{\text {mask }}= \left(\mathcal{E}_{\text {mask }}, \mathcal{V}\right)$
3.1 Masking strategy
Edge-wise random masking $(\mathcal{T}_{\text {edge }}$
$\mathcal{E}_{\text {mask }} \sim \operatorname{Bernoulli}(p)$
Path-wise random masking $(\mathcal{T}_{\text {path}}$
$\mathcal{E}_{\text {mask }} \sim \operatorname{Random} \operatorname{Walk}\left(\mathcal{R}, n_{\text {walk }}, l_{\text {walk }}\right)$
其中,$\mathcal{R} \subseteq \mathcal{V}$ 是从图中采样的一组根节点,$n_{\text {walk }}$ 为每个节点的行走次数,$l_{\text {walk }}$ 为行走长度。
在这里,我们遵循度分布,抽样了一个节点的子集(例如,50%),没有替换作为根节点 $\mathcal{R}$。这样的采样也可以防止图中存在的潜在的长尾偏差(即,更多的屏蔽边是那些属于高度节点的边)。
3.2 Encoder
- GCN Encoder
- SAGE Encoder
- GAT Encoder
3.2 Decoder
$h_{\omega}\left(z_{i}, z_{j}\right)=\operatorname{Sigmoid}\left(z_{i}^{\mathrm{T}} z_{j}\right)$
$h_{\omega}\left(z_{i}, z_{j}\right)=\operatorname{Sigmoid}\left(\operatorname{MLP}\left(z_{i} \circ z_{j}\right)\right)$
$g_{\phi}\left(z_{v}\right)=\operatorname{MLP}\left(z_{v}\right)$
3.3 Learning objective
损失函数包括:
- Reconstruction loss:计算的是掩码边 $\mathcal{E}^{+}=\mathcal{E}_{\text {mask }}$ 的重构损失;
- Regression loss:衡量的是节点度的预测与掩蔽图中原始节点度的匹配程度:
$\mathcal{L}_{\mathrm{deg}}=\frac{1}{|\mathcal{V}|} \sum\limits _{v \in \mathcal{V}}\left\|g_{\phi}\left(z_{v}\right)-\operatorname{deg}_{\text {mask }}(v)\right\|_{F}^{2}$
因此,总体损失为:
$\mathcal{L}=\mathcal{L}_{\mathrm{GAEs}}+\alpha \mathcal{L}_{\mathrm{deg}}$
4 Experiments

5 Conclusion
论文解读(MaskGAE)《MaskGAE: Masked Graph Modeling Meets Graph Autoencoders》的更多相关文章
- 论文解读(GraphDA)《Data Augmentation for Deep Graph Learning: A Survey》
论文信息 论文标题:Data Augmentation for Deep Graph Learning: A Survey论文作者:Kaize Ding, Zhe Xu, Hanghang Tong, ...
- 论文解读(SUGRL)《Simple Unsupervised Graph Representation Learning》
Paper Information Title:Simple Unsupervised Graph Representation LearningAuthors: Yujie Mo.Liang Pen ...
- 论文解读(GraRep)《GraRep: Learning Graph Representations with Global Structural Information》
论文题目:<GraRep: Learning Graph Representations with Global Structural Information>发表时间: CIKM论文作 ...
- 论文解读(MCGC)《Multi-view Contrastive Graph Clustering》
论文信息 论文标题:Multi-view Contrastive Graph Clustering论文作者:Erlin Pan.Zhao Kang论文来源:2021, NeurIPS论文地址:down ...
- 论文解读(CGC)《CGC: Contrastive Graph Clustering for Community Detection and Tracking》
论文信息 论文标题:CGC: Contrastive Graph Clustering for Community Detection and Tracking论文作者:Namyong Park, R ...
- 论文解读(GROC)《Towards Robust Graph Contrastive Learning》
论文信息 论文标题:Towards Robust Graph Contrastive Learning论文作者:Nikola Jovanović, Zhao Meng, Lukas Faber, Ro ...
- 论文解读(DAGNN)《Towards Deeper Graph Neural Networks》
论文信息 论文标题:Towards Deeper Graph Neural Networks论文作者:Meng Liu, Hongyang Gao, Shuiwang Ji论文来源:2020, KDD ...
- 论文解读(SCGC))《Simple Contrastive Graph Clustering》
论文信息 论文标题:Simple Contrastive Graph Clustering论文作者:Yue Liu, Xihong Yang, Sihang Zhou, Xinwang Liu论文来源 ...
- 论文解读(Geom-GCN)《Geom-GCN: Geometric Graph Convolutional Networks》
Paper Information Title:Geom-GCN: Geometric Graph Convolutional NetworksAuthors:Hongbin Pei, Bingzhe ...
随机推荐
- nova服务的基本使用
创建flavor类型 [root@controller ~]# openstack help flavor create usage: openstack flavor create [-h] [-f ...
- 分享一下 Idea 的 scope 功能
分享一下 Idea 的 scope 功能 事情的起因是我在使用 idea 的call hierarchy功能时,觉得它没有像find usage那样有排除功能,并且如果点击了展开全部,当代码中使用了某 ...
- .NET混合开发解决方案8 WinForm程序中通过设置固定版本运行时的BrowserExecutableFolder属性集成WebView2控件
系列目录 [已更新最新开发文章,点击查看详细] 在我的博客<.NET混合开发解决方案7 WinForm程序中通过NuGet管理器引用集成WebView2控件>中介绍了WinForm ...
- 高级IPC DBus
What is IPC IPC [Inter-Process Communication] 进程间通信,指至少两个进程或线程间传送数据或信号的一些技术或方法.在Linux/Unix中,提供了许多IPC ...
- muduo项目介绍
在上一个集群聊天服务器项目中,我使用了muduo作为网络库,然后主要实现了业务逻辑等,所以为了深入网络库的代码和实现,我跟着一位老师的代码去实现了muduo库的基本原理和作用,当然只是实现了主体的代码 ...
- 那些我懵懵懂懂的js
1.this 如果说this是代表当前对象,而js中,除原始值(var str = "Leonie",值Leonie是不能改变的,它就是一个字符串,如var num = 4, 4也 ...
- 【题解】2021CSP-J2T3网络连接
目录 题目链接 题目分析 是否重复 读入提取数 非法情况判断 参考代码 题目链接 题目分析 map不会冲突!!不一定要like代码中那样加-号! 模拟,算不上大, 首先,我们想想整个流程: 现在,我们 ...
- spring boot 默认日志替换为 log4j
移除默认日志 <dependency> <groupId>org.springframework.boot</groupId> <artifactId> ...
- 767. Reorganize String - LeetCode
Question 767. Reorganize String Solution 题目大意: 给一个字符串,将字符按如下规则排序,相邻两个字符一同,如果相同返回空串否则返回排序后的串. 思路: 首先找 ...
- 『忘了再学』Shell基础 — 16、位置参数变量
目录 1.位置参数变量$n 2.位置参数变量$*和$@ 3.位置参数变量$# 位置參数变量的作用主要用于脚本的传参. 位置參数变量的名称和作用都是确定不能改变的,但是该变量的内容是可以更改的,也就是变 ...