通过C#/.NET API使用CNTK
(原文)CNTK v2.2.0提供C#API来建立、训练和评估CNTK模型。 本节概要介绍了CNTK C#API。 在CNTK github respository中可以找到C#训练示例。
使用C#/ .NET管理API构建深层神经网络
CNTK C#API 通过CNTKLib命名空间提供基本操作。 CNTK操作需要一个或两个具有必要参数的输入变量,并产生一个CNTK函数。 CNTK函数将输入数据映射到输出。 CNTK函数也可以被视为可变量,并被作为另一个CNTK操作的输入。 通过这种机制,可以通过链接和组合来构建具有基本CNTK操作的深层神经网络。 举个例子:
private static Function CreateLogisticModel(Variable input, int numOutputClasses)
{
Parameter bias = new Parameter(new int[]{numOutputClasses}, DataType.Float, }
Parameter weights = new Parameter(new int[]{input.Shape[], numOutputClasses}, DataType.Float,
CNTKLib.GlorotUniformInitializer(
CNTKLib.DefaultParamInitScale,
CNTKLib.SentinelValueForInferParamInitRank,
CNTKLib.SentinelValueForInferParamInitRank, ));
var z = CNTKLib.Plus(bias, CNTKLib.Times(weights, input));
Function logisticClassifier = CNTKLib.Sigmoid(z, "LogisticClassifier");
return logisticClassifier;
}
CNTKLib.Plus,CNTKLib.Times,CNTKLib.Sigmoid是基本的CNTK操作。 输入参数可以是表示数据特征的CNTK变量。 它也可能是另一个CNTK函数。 该代码构建了一个简单的计算网络,其参数在训练阶段进行调整,以创建一个像样的多类分类器(multi-class classifier)。
CNTK C#API提供了构建卷积神经网络(CNN)和复发神经网络(RNN)的选项。 例如,构建一个2层CNN图像分类器:
var convParams1 = new Parameter(
new int[] { kernelWidth1, kernelHeight1, numInputChannels, outFeatureMapCount1 },
DataType.Float, CNTKLib.GlorotUniformInitializer(convWScale, -, ), device);
var convFunction1 = CNTKLib.ReLU(CNTKLib.Convolution(
convParams1, input,
new int[] { , , numInputChannels } ));
var pooling1 = CNTKLib.Pooling(convFunction1, PoolingType.Max,
new int[] { poolingWindowWidth1, poolingWindowHeight1 }, new int[] { hStride1, vStride1 }, new bool[] { true }); var convParams2 = new Parameter(
new int[] { kernelWidth2, kernelHeight2, outFeatureMapCount1, outFeatureMapCount2 },
DataType.Float, CNTKLib.GlorotUniformInitializer(convWScale, -, ), device);
var convFunction2 = CNTKLib.ReLU(CNTKLib.Convolution(
convParams2, pooling1,
new int[] { , , outFeatureMapCount1 } ));
var pooling2 = CNTKLib.Pooling(convFunction2, PoolingType.Max,
new int[] { poolingWindowWidth2, poolingWindowHeight2 }, new int[] { hStride2, vStride2 }, new bool[] { true }); var imageClassifier = TestHelper.Dense(pooling2, numClasses, device, Activation.None, "ImageClassifier");
还提供了构建具有长短时内存(LSTM)的RNN的示例。
通过C#/.NET准备数据
CNTK提供用于训练的数据准备工具。 CNTK C#API公开了这些工具。 它可以接受各种预处理形式的数据。 数据的加载和批处理数据非常高效。 例如,假定我们有以下称为“Train.ctf”的CNTK文本格式的数据:
|features 3.854499 4.163941 |labels 1.000000
|features 1.058121 1.204858 |labels 0.000000
|features 1.870621 1.284107 |labels 0.000000
|features 1.134650 1.651822 |labels 0.000000
|features 5.420541 4.557660 |labels 1.000000
|features 6.042731 3.375708 |labels 1.000000
|features 5.667109 2.811728 |labels 1.000000
|features 0.232070 1.814821 |labels 0.000000
一个CNTK数据源会以这种方式被创建:
var minibatchSource = MinibatchSource.TextFormatMinibatchSource(
Path.Combine(DataFolder, "Train.ctf"), streamConfigurations,
MinibatchSource.InfinitelyRepeat, true);
批处理数据可以在训练的时候专业被检索和使用:
var minibatchData = minibatchSource.GetNextMinibatch(minibatchSize, device);
使用C#/ .NET托管API训练深层神经网络
随机梯度下降(SGD)是利用小型训练数据优化模型参数的一种方法。 CNTK支持许多在深入学习文献中常见的SGD变体。 它们通过CNTK C#API公开:
- SGDLearner - 一个内置CNTK SGD学习器
- MomentumSGDLearner - 内置CNTK动量SGD学习器
- FSAdaGradLearner - AdaGrad learner的变体
- AdamLearner - Adam learner
- AdaGradLearner - 自适应梯度学习器
- RMSPropLearner - RMSProp学习器
- AdaDeltaLearner - AdaDelta学习器
有关不同学习优化器的一般概述,请参阅随机梯度下降Stochastic gradient descent.
CNTK训练器用来进行minibatch训练。以下是minibatch训练的一段C#diamante片段:
// build a learning model
var featureVariable = Variable.InputVariable(new int[] { inputDim }, DataType.Float);
var labelVariable = Variable.InputVariable(new int[] { numOutputClasses }, DataType.Float);
var classifierOutput = CreateLinearModel(featureVariable, numOutputClasses, device);
var loss = CNTKLib.CrossEntropyWithSoftmax(classifierOutput, labelVariable);
var evalError = CNTKLib.ClassificationError(classifierOutput, labelVariable); // prepare for training
var learningRatePerSample = new CNTK.TrainingParameterScheduleDouble(0.02, );
var parameterLearners =
new List<Learner>() { Learner.SGDLearner(classifierOutput.Parameters(), learningRatePerSample) };
var trainer = Trainer.CreateTrainer(classifierOutput, loss, evalError, parameterLearners); int minibatchSize = ;
int numMinibatchesToTrain = ; // train the model
for (int minibatchCount = ; minibatchCount < numMinibatchesToTrain; minibatchCount++)
{
Value features, labels;
GenerateValueData(minibatchSize, inputDim, numOutputClasses, out features, out labels, device);
trainer.TrainMinibatch(
new Dictionary<Variable, Value>() { { featureVariable, features }, { labelVariable, labels } }, device);
TestHelper.PrintTrainingProgress(trainer, minibatchCount, );
}
这段代码使用了一个每个样本学习率为0.02的CNTK内置SGD学习器, 学习器用来为模型参数做优化。 训练器与学习器一同创建,一个是loss函数,一个是评估函数。 在每次训练迭代期间,将小批量数据送给训练器以更新模型参数。 训练期间,训练耗损和评估误差由辅助方法显示。
在代码中,我们生成了两类统计分离的标签和特征数据。 在其他更实际的例子中,公共测试数据加载了CNTK MinibatchSource。
使用C#/.NET托管API评估深度神经网络
C# API具有评估API来进行模型评估。多数训练示例在训练之后需要进行模型评估。
开始使用C#训练示例
看完这个概述之后,可以通过两种方法继续C#培训示例:使用GitHub的CNTK源或使用CNTK NuGet for Windows处理CNTK示例。
通过CNTK源码
通过CNTK NuGet获取CNTK示例
通过C#/.NET API使用CNTK的更多相关文章
- Keras官方中文文档:序贯模型API
Sequential模型接口 如果刚开始学习Sequential模型,请首先移步这里阅读文档,本节内容是Sequential的API和参数介绍. 常用Sequential属性 model.layers ...
- 深度学习框架caffe/CNTK/Tensorflow/Theano/Torch的对比
在单GPU下,所有这些工具集都调用cuDNN,因此只要外层的计算或者内存分配差异不大其性能表现都差不多. Caffe: 1)主流工业级深度学习工具,具有出色的卷积神经网络实现.在计算机视觉领域Caff ...
- 【翻译】Keras.NET简介 - 高级神经网络API in C#
Keras.NET是一个高级神经网络API,它使用C#编写,并带有Python绑定,可以在Tensorflow.CNTK或Theano上运行.其关注点是实现快速实验.因为做好研究的关键是:能在尽可能短 ...
- 干货来袭-整套完整安全的API接口解决方案
在各种手机APP泛滥的现在,背后都有同样泛滥的API接口在支撑,其中鱼龙混杂,直接裸奔的WEB API大量存在,安全性令人堪优 在以前WEB API概念没有很普及的时候,都采用自已定义的接口和结构,对 ...
- 12306官方火车票Api接口
2017,现在已进入春运期间,真的是一票难求,深有体会.各种购票抢票软件应运而生,也有购买加速包提高抢票几率,可以理解为变相的黄牛.对于技术人员,虽然写一个抢票软件还是比较难的,但是还是简单看看123 ...
- 几个有趣的WEB设备API(二)
浏览器和设备之间还有很多有趣的接口, 1.屏幕朝向接口 浏览器有两种方法来监听屏幕朝向,看是横屏还是竖屏. (1)使用css媒体查询的方法 /* 竖屏 */ @media screen and (or ...
- html5 canvas常用api总结(三)--图像变换API
canvas的图像变换api,可以帮助我们更加方便的绘画出一些酷炫的效果,也可以用来制作动画.接下来将总结一下canvas的变换方法,文末有一个例子来更加深刻的了解和利用这几个api. 1.画布旋转a ...
- JavaScript 对数据处理的5个API
JavaScript对数据处理包括向上取整.向下取整.四舍五入.固定精度和固定长度5种方式,分别对应ceil,floor,round,toFixed,toPrecision等5个API,本文将对这5个 ...
- ES5对Array增强的9个API
为了更方便的对Array进行操作,ES5规范在Array的原型上新增了9个方法,分别是forEach.filter.map.reduce.reduceRight.some.every.indexOf ...
随机推荐
- pycharm 的操作1
- openresty 编译ngx_pagespeed 模块-docker 构建
ngx_pagespeed 是一个很不错的web 优化模块,我们通过简单的配置就可以对于web页面的加载有很大的提升 ngx_pagespeed 依赖psol 模块 Dockerfile # Do ...
- Python __name__变量
原文: http://blog.csdn.net/u011511601/article/details/53504355 Python使用缩进对齐组织代码的执行,所有没有缩进的代码,都会在载入时自动执 ...
- react-router v4.0 知识点
react-router 提供了一个withRouter组件 withRouter可以包装任何自定义组件,将react-router 的 history,location,match 三个对象传入. ...
- php 提取图片主要颜色
PHP实现获取图片颜色值的方法 PHP获取图片颜色值检测图片主要颜色是通过imagecreatefromjpeg函数读取图片,再循环获得各个颜色值加以计算实现的. /** * 获取图片主要颜色 * @ ...
- DevExpress GridView 那些事儿
1:去除 GridView 头上的 "Drag a column header here to group by that column" --> 点击 Run Desig ...
- 【转】Lambda表达式详解
前言 1.天真热,程序员活着不易,星期天,也要顶着火辣辣的太阳,总结这些东西. 2.夸夸lambda吧:简化了匿名委托的使用,让你让代码更加简洁,优雅.据说它是微软自c#1.0后新增的最重要的功能之一 ...
- 基于结构化平均感知机的分词器Java实现
基于结构化平均感知机的分词器Java实现 作者:hankcs 最近高产似母猪,写了个基于AP的中文分词器,在Bakeoff-05的MSR语料上F值有96.11%.最重要的是,只训练了5个迭代:包含语料 ...
- linux进程监控和简单的重启&服务的创建 参考自http://blog.csdn.net/lockheed_hong/article/details/73549837
脚本文件 该脚本实现了一个检测进程是否存在,不存在的情况下重启进程并且记录日志. #! /bin/sh proc_name="console/queue/gift.php" # 进 ...
- 各种类型的Json格式化
using System; using System.Collections.Generic; using System.Text; using System.Data; using System.R ...