安装

Hadoop安装: http://www.powerxing.com/install-hadoop/ 
Hadoop集群配置: http://www.powerxing.com/install-hadoop-cluster/ 
Hive安装: https://chu888chu888.gitbooks.io/hadoopstudy/content/Content/8/chapter0807.html

安装具体教程请看上面链接,本地测试只用了单机配置,集群配置(后面的flume用到)看上面的详细链接, 因为之前没有接触过java的相关,这里说下遇到的几个问题.

HadoopHive的1.x和2.x版本要对应 
JAVA/Hadoop相关的环境变量配置,习惯了PHP的童鞋在这块可能容易忽略 
启动Hadoop提示Starting namenodes on [],namenodes为空,是因为没有指定ip或端口,修改hadoop/core-site.xml如下

<configuration>
<property>
<name>dfs.namenode.rpc-address</name>
<value>127.0.0.0:9001</value>
</property>
</configuration>

安装完成后输入jps可以查看到NameNode,DataNode等

 

上报和接收

swoole和workerman都有简单版本实现的数据监控,包括上报,接收,存储,展示, 主要使用udp上传(swoole版本已升级为tcp长连接),redis缓存,文件持久化,highcharts展示,可以作为思路参考 
swoole-statistics : https://github.com/smalleyes/statistics 
workerman-statistics : https://github.com/walkor/workerman-statistics 
本例使用swoole提供的接口实现UDP传输,因为上报数据是一定程度可以容错,所以选择UDP效率优先 
接收数据临时存储在Redis中,每隔几分钟刷到文件中存储,文件名按模块和时间分割存储,字段|分割(后面与hive对应)

 

数据转存

创建Hive数据表

根据文件数据格式编写Hive数据表, TERMINATED BY字段与前面文件字段分隔符想对应 
对表按日期分区PARTITIONED BY

CREATE TABLE login (
time int comment '登陆时间',
type string comment '类型,email,username,qq等',
device string comment '登陆设备,pc,android,ios',
ip string comment '登陆ip',
uid int comment '用户id',
is_old int comment '是否老用户'
)
PARTITIONED BY (
`date` string COMMENT 'date'
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '|';

定时(Crontab)创建hadoop分区

hive -e "use web_stat; alter table login add if not exists partition (date='${web_stat_day}')"

转存

Flume监听文件目录,将数据传输到能访问Hdfs集群的服务器上,这里传输到了224机器的7000端口

#agent3表示代理名称 login
agent3.sources=source1
agent3.sinks=sink1
agent3.channels=channel1
配置source1

配置source1

agent3.sources.source1.type=spooldir
agent3.sources.source1.spoolDir=/data/releases/stat/Data/10001/
agent3.sources.source1.channels=channel1
agent3.sources.source1.fileHeader = false

配置sink1

agent3.sinks.sink1.type=avro
agent3.sinks.sink1.hostname=192.168.23.224
agent3.sinks.sink1.port=7000
agent3.sinks.sink1.channel=channel1

配置channel1

agent3.channels.channel1.type=file
agent3.channels.channel1.checkpointDir=/data/flume_data/checkpoint_login
agent3.channels.channel1.dataDirs=/data/flume_data/channelData_login

启动flume

加到supervisor守护进程

/home/flume/bin/flume-ng agent -n agent3 -c /home/flume/conf/ -f /home/flume/conf/statistics/login_flume.conf -Dflume.root.logger=info,console

224机器监听7000端口,将数据写到hdfs集群

agent1表示代理名称

agent4.sources=source1
agent4.sinks=sink1
agent4.channels=channel1

配置source1

agent4.sources.source1.type=avro
agent4.sources.source1.bind=192.168.23.224
agent4.sources.source1.port=7000
agent4.sources.source1.channels=channel1

配置sink1

agent4.sinks.sink1.type=hdfs
agent4.sinks.sink1.hdfs.path=hdfs://hdfs/umr-ubvzlf/uhiveubnhq5/warehouse/web_stat.db/login/date\=%Y-%m-%d
agent4.sinks.sink1.hdfs.fileType=DataStream
agent4.sinks.sink1.hdfs.filePrefix=buffer_census_
agent4.sinks.sink1.hdfs.writeFormat=TEXT
agent4.sinks.sink1.hdfs.rollInterval=30
agent4.sinks.sink1.hdfs.inUsePrefix = .
agent4.sinks.sink1.hdfs.rollSize=536870912
agent4.sinks.sink1.hdfs.useLocalTimeStamp = true
agent4.sinks.sink1.hdfs.rollCount=0
agent4.sinks.sink1.channel=channel1

配置channel1

agent4.channels.channel1.type=file
agent4.channels.channel1.checkpointDir=/data/flume_data/login_checkpoint
agent4.channels.channel1.dataDirs=/data/flume_data/login_channelData

启动

加到supervisor守护进程

/usr/local/flume/bin/flume-ng agent -n agent4 -c /usr/local/flume/conf/ -f /usr/local/flume/conf/statistics/login_flume.conf -Dflume.root.logger=info,console

清洗数据

通过Thrift的PHP扩展包调用Hive,编写类SQL的HQL转换为MapReduce任务读取计算HDFS里的数据, 将结果存储在MySQL中 
php-thrift-client下载地址: https://github.com/garamon/php-thrift-hive-client

define('THRIFT_HIVE' , ROOT .'/libs/thrift');
$GLOBALS['THRIFT_ROOT'] = THRIFT_HIVE . '/lib';
require_once $GLOBALS['THRIFT_ROOT'] . '/packages/hive_service/ThriftHive.php';
require_once $GLOBALS['THRIFT_ROOT'] . '/transport/TSocket.php';
require_once $GLOBALS['THRIFT_ROOT'] . '/protocol/TBinaryProtocol.php';
require_once THRIFT_HIVE . '/ThriftHiveClientEx.php';
$transport = new \TSocket('127.0.0.1', 10000);
$transport->setSendTimeout(600 * 1000);
$transport->setRecvTimeout(600 * 1000);
$this->client = new \ThriftHiveClientEx(new \TBinaryProtocol($transport));
$this->client->open();
$this->client->execute("show databases");
$result = $this->client->fetchAll();
var_dump($result);
$this->client->close();

HQL语法说明: https://chu888chu888.gitbooks.io/hadoopstudy/content/Content/8/chapter0803.html

注意的是,尽量要将HQL语句能转换为MapReduce任务,不然没利用上Hadoop的大数据计算分析,就没意义 
例如下面的逻辑,取出来在内存里分析,这样的逻辑尽量避免,因为sql在hive里执行就是普普通通的数据,没有转换为mapreduce

select * from login limit 5;
// php处理
$count = 0;
foreach ($queryResult as $row) {
$count ++;
}

一次性转换为MapReduce,利用Hadoop的计算能力

select type,count(*) from login group by type;  // 这样就用到了

建表使用了PARTITIONED BY分区断言后,查询就可以利用分区剪枝(input pruning)的特性,但是断言字段必须离where关键字最近才能被利用上 
// 如前面的login表使用到了date分区断言,这里就得把date条件放在第一位

select count(*) from login where date='2016-08-23' and is_old=1;

Hive中不支持等值连表,如下

select * from dual a,dual b where a.key = b.key;

应写为:

select * from dual a join dual b on a.key = b.key;

Hive中不支持insert,而且逻辑上也不允许,应为hadoop是我们用来做大数据分析,而不应该作为业务细分数据

 

数据报表展示

这一步就简单了,读取MySQL数据,使用highcharts等工具做各种展示,也可以用crontab定时执行php脚本发送日报,周报等等

 

后续更新

最近看一些资料和别人沟通发现,清洗数据这一步完全不用php,可以专注于HQL实现清洗逻辑,将结果保存在hadoop中,再用Sqoop将hadoop数据和MySQL数据同步。即简化了流程,免去mysql手工插入,又做到了数据更实时,为二次清洗逻辑的连表HQL做了铺垫

PHP+Hadoop+Hive+Thrift+Mysql实现数据统计分析的更多相关文章

  1. hive向mysql导入数据sqoop命令出错

    报错信息: java.lang.Exception: java.io.IOException: java.lang.ClassNotFoundException: info at org.apache ...

  2. Spark+Hadoop+Hive集群上数据操作记录

    [rc@vq18ptkh01 ~]$ hadoop fs -ls / drwxr-xr-x+ - jc_rc supergroup 0 2016-11-03 11:46 /dt [rc@vq18ptk ...

  3. PHP+Hadoop实现数据统计分析

    记一次完全独立完成的统计分析系统的搭建过程,主要用到了PHP+Hadoop+Hive+Thrift+Mysql实现 安装 Hadoop安装: http://www.powerxing.com/inst ...

  4. Sqoop是一款开源的工具,主要用于在HADOOP(Hive)与传统的数据库(mysql、oracle...)间进行数据的传递

    http://niuzhenxin.iteye.com/blog/1706203   Sqoop是一款开源的工具,主要用于在HADOOP(Hive)与传统的数据库(mysql.postgresql.. ...

  5. Hadoop Hive与Hbase整合+thrift

    Hadoop Hive与Hbase整合+thrift 1.  简介 Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供完整的sql查询功能,可以将sql语句 ...

  6. Centos搭建mysql/Hadoop/Hive/Hbase/Sqoop/Pig

    目录: 准备工作 Centos安装 mysql Centos安装Hadoop Centos安装hive JDBC远程连接Hive Hbase和hive整合 Centos安装Hbase 准备工作: 配置 ...

  7. 使用Sqoop从MySQL导入数据到Hive和HBase 及近期感悟

    使用Sqoop从MySQL导入数据到Hive和HBase 及近期感悟 Sqoop 大数据 Hive HBase ETL 使用Sqoop从MySQL导入数据到Hive和HBase 及近期感悟 基础环境 ...

  8. 大数据学习系列之四 ----- Hadoop+Hive环境搭建图文详解(单机)

    引言 在大数据学习系列之一 ----- Hadoop环境搭建(单机) 成功的搭建了Hadoop的环境,在大数据学习系列之二 ----- HBase环境搭建(单机)成功搭建了HBase的环境以及相关使用 ...

  9. 使用sqoop从mysql导入数据到hive

      目录 前言 一.使用的导入命令 二.遇到的问题及解决 1. 用文本字段进行分区的问题 2. Hadoop历史服务器Hadoop JobHistory没开启的问题 3. 连接元数据存储数据库报错 4 ...

随机推荐

  1. C# ArrayList的使用方法小总结

    1.什么是ArrayList ArrayList就是传说中的动态数组,用MSDN中的说法,就是Array的复杂版本,它提供了如下一些好处: 动态的增加和减少元素 实现了ICollection和ILis ...

  2. winform窗体 小程序【进程】

    进程 一个应用程序就是一个进程,我的理解是,只要是打开应用程序,就会创建进程. 在.NET框架在using.System.Diagnostics名称空间中,有一个类Process,用来创建一个新的进程 ...

  3. 当堆遇到STL 代码焕发光芒

    来自度娘的释义,堆的含义大概是这样的: 感性理解: 堆(英语:heap)是计算机科学中一类特殊的数据结构的统称.堆通常是一个可以被看做一棵树的数组对象.堆总是满足下列性质: 堆中某个节点的值总是不大于 ...

  4. IDEA@Data注释使用

    @Data注解主要是帮助解决Setter 和 Getter以及 toString这种重复的无脑工作 加入@Data注解可以直接帮助我们添加实体类相应的Setter 和 Getter以及 toStrin ...

  5. Java四中引用

      在JDK1.2以后将对象应用分为4中,强引用,软引用,弱引用,虚引用,这样的方式可以更加灵活控制对象的声明周期     强引用   String str = "123";   ...

  6. 【Tomcat】部署Web到tomcat的四种方式

    一.静态部署 1.直接将web项目文件件拷贝到webapps 目录中     Tomcat的Webapps目录是Tomcat默认的应用目录,当服务器启动时,会加载所有这个目录下的应用.所以可以将JSP ...

  7. CentOS总结归纳之基本操作(linux系管与运维一)

    原创作品,转载请在文章明显位置注明出处:https://www.cnblogs.com/sunshine5683/p/10170009.html 使用命令关闭和重启系统: 一.条件:只有root用户才 ...

  8. 深入浅出Mybatis技术原理与实战(杨开振)(带详细书签) PDF 下载 高清 完整版+源码

    (杨开振) 源码 IDE eclipse 建表语句也在里面 电子书+源码地址

  9. NIO学习笔记五:Buffer 的使用

    Java NIO中的Buffer用于和NIO通道进行交互.数据是从通道读入缓冲区,从缓冲区写入到通道中. 缓冲区本质上是一块可以写入数据,然后可以从中读取数据的内存.这块内存被包装成NIO Buffe ...

  10. 用01随机函数构造[a,b]整数范围随机数

    #include <stdio.h> #include <stdlib.h> #define RAND_0_1 (rand()&0x1) int random(int ...