FZU Monthly-201901 tutorial

题目(难度递增) easy easy-medium medium medium-hard hard
思维难度 AHG F B CE D
编码难度 AH CEFG B D

A. RonTanYoYiSen

对于本题,你只需要FOR一遍判断是不是回文串即可。不管一个字符串是不是回文串,只有将它反过来再写一边就可以构造出一个回文串。根据题意,如果是回文串则输出“YES NO”,否则输出“NO YES”。

复杂度\(O(N)\)

B. max position set

Tutorial 1. Bruce force

由于是字典序的缘故,所以我们从第一列开始看到最后一列,如果当前列选择后,不会违背字典序,那么根据贪心思想这一列要,否则显然不能取。这样做 \(N\) 次,每次把新的一列加到前面选出来的字符串后面,check一下是否合法。总复杂度 \(O(N^3)\)。

例子:

adc
bcd
加进第一列
a
b
合法,保留。加入第二列
ad
bc
不合法,撤销。加入第三列
ac
bd
合法,保留。

Tutorial 2. Observe

观察可以发现,每加入一列后,如果第 \(i\) 行的字典序小于第 \(i+1\) 行,那么之后怎么怎么加都不会再对着这两行有影响,即:整个过程中需要考虑的一定是相邻的且所有字符均一样的字符串。所以标记一下 \(N-1\) 个相邻关系中国哪些已经出现偏序,那些还没有,不需要考虑前面的取的字符,只需要比较当前新加进的这一列即可(因为前面一定是一样的)

这样还是做 \(N\) 次,每次比较只花 \(O(N)\) 的时间,总复杂度 \(O(N^2)\)。

C.Palindrome

画图把相同的字符连线会发现就只有4种情况,然后分类讨论一下

  • m1:当m1时,任意长度为1的子串显然都是回文串,所以答案是 \(k^n\)

  • m > n:与m==1情况是一样的

  • m==n:这个时候只需要考虑前半部分,这时候答案分别是 \(k^{n/2}\)(n为偶数),\(k^{n/2+1}\)(n为奇数)

  • m < n: 当m为奇数,答案为\(k^2\),当m为偶数,答案为\(k\)

注:m > n 的时候,显然怎么构造都满足题意

复杂度为\(O(N)\)

D. special square

同样的题目背景,经典题型是求面积最大的全1矩阵。先学习一下这道题的做法,关于这道题,演算法笔记上有非常详尽的分析:http://www.csie.ntnu.edu.tw/~u91029/MaximumSubarray.html#2

这题的做法基本与那道经典题类似,一样的按行or列枚举,通过单调栈去check,核心就是满足条件的矩形四条边都要顶到障碍物,代码基本与原经典题类似,理解原经典题后如还有细节有疑惑可见代码。

复杂度为\(O(N^2)\)

//
// solution.cpp
// special-matrix
//
// Created by 郑浩晖 on 2018/12/19.
// Copyright © 2018 郑浩晖. All rights reserved.
// #include <bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define sz(x) ((int)(x).size())
#define dd(x) cout << #x << " = " << (x) << ", "
#define de(x) cout << #x << " = " << (x) << endl
typedef pair<int, int> pii; const int N = 5e3 + 7;
char s[N][N];
int n, m, up[N][N];
void solve()
{
cin >> n >> m; m++;
for (int i = 0; i < n; i++) { scanf("%s", s[i]); s[i][m-1] = '0'; }
for (int i = 0; i < m; i++) s[n][i]='0';
for (int j = 0; j < m; j++) up[0][j] = s[0][j] == '1';
for (int i = 1; i < n; i++) {
for (int j = 0; j < m; j++) {
up[i][j] = s[i][j] == '1' ? up[i - 1][j] + 1 : 0;
}
}
int ans = 0;
for (int i = 0; i < n; i++) {
stack<pii> stk;
int max_col = -1;
for (int j = 0; j < m; j++) {
int pos = j;
while (!stk.empty() && stk.top().second > up[i][j]) {
if (stk.top().first <= max_col)
ans++;
pos = stk.top().first;
stk.pop();
}
if (s[i + 1][j] == '0') max_col = j;
if (!stk.empty() && stk.top().second == up[i][j]) continue;
if (up[i][j]) stk.push({pos, up[i][j]});
}
}
cout << ans << endl;
} int main()
{
solve();
return 0;
}

E.LiHuaAndPoker

分类讨论

  • K = 1。这个情况,字符串的相对位置不变,所以可能最多只有n种(每一个字母做开头),对n种情况做一个比较即可,复杂度可以是O(n),O(nlogn),O(n2),O(n2logn)均可以通过。
  • K > 1。对于K大于1的所有情况,任何字符串都能调整成他的最小字典序(想想为什么),即对原字符串从小到大排序。对于K>2的排序情况类似冒泡排序。

F.LiHuaAndArray

一个经典的标记技巧(延迟计算)。对所有的[L,R]区间,在L位置标记+1,在R位置标记-1。标记结束后统计每一对奇偶位置的前缀和,前缀和是奇数的就交换位置,是偶数的不做操作。

复杂度O(N)。

G.Assassin

模拟题,分阶段模拟

  • 负一从A点出发追小号
  • 负一追到小号后回A点

注:有个学弟 “小号已经走的路程” 用了int变量,太心疼了

H.DeadlyShoot

这个题目在大一的c语言日常题目中出现过。

Tutorial 1. Bruce force

对着题意模拟一直做数位求和直到一位,然后分类找出最大的一组输出。

Tutorial 2. Math

我们设一个数A的数位和为S,那么易得A和S同余于9。由此,反复求数位和直到只剩一位这个操作等价于对9取模。因此,按照所有数对9的余数进行分类,最后输出余数最大的那一组即可,需要特别注意的是,当某个数能被9整除的时候,他最后得到的数位和是9而不是0。

复杂度为\(O(N)\)

**

**


博主只是友情提供代发服务

FZU Monthly-201901 tutorial的更多相关文章

  1. FZU Monthly-201903 tutorial

    FZU Monthly-201903 tutorial 题目(难度递增) easy easy-medium medium medium-hard hard 思维难度 ABF G CH D E A. D ...

  2. FZU Monthly-201909 tutorial

    FZU Monthly-201909 tutorial 题目(难度递增) easy easy-medium medium medium-hard hard 思维难度 AB CD EF G H A. I ...

  3. FZU Monthly-201906 tutorial

    FZU Monthly-201906 tutorial 题目(难度递增) easy easy-medium medium medium-hard hard 思维难度 AE B DG CF H A. X ...

  4. FZU Monthly-201905 tutorial

    FZU Monthly-201905 tutorial 题目(难度递增) easy easy-medium medium medium-hard hard 思维难度 AB H DG CE F A. C ...

  5. Microsoft Azure Tutorial: Build your first movie inventory web app with just a few lines of code

    Editor’s Note: The following is a guest post from Mustafa Mahmutović, a Microsoft Student Partner wh ...

  6. Monthly数据类型

    Monthly由来 最近在做关于智能财税的项目,大量用到了账期相关的数据操作.项目已有两年历史了,对于账期数据,前辈们用的是DateTime数据类型,即每个月的最后一天就是账期.而用DateTime来 ...

  7. Career Planning:Developers Best Practices Tutorial

    This small tutorial is based on my past 16+ years of experience in software development industry. I ...

  8. [翻译+山寨]Hangfire Highlighter Tutorial

    前言 Hangfire是一个开源且商业免费使用的工具函数库.可以让你非常容易地在ASP.NET应用(也可以不在ASP.NET应用)中执行多种类型的后台任务,而无需自行定制开发和管理基于Windows ...

  9. Monthly Income Report – August 2016

    原文链接:https://marcoschwartz.com/monthly-income-report-august-2016/ Every month, I publish a report of ...

随机推荐

  1. tcp/ip通信中udp头部结构udphdrp->check校验计算

    通过raw socket修改通信数据后,可通过函数 set_udp_checksum1 重新校验计算iph->check值 在http://www.cnblogs.com/dpf-10/p/78 ...

  2. Silverlight 查询DataGrid 中匹配项 ,后台改变选中行颜色

    需求:根据关键字(参会人号码或名称)查找参会人,在datagird 中高亮显示 界面:我在界面上增加了一个文本框和按钮,进行查找操作 操作说明: 根据关键字进行搜索:输入关键字 点击查找,如果找到 以 ...

  3. 我的Visual Studio必用工具

    自己备用 代码生成工具:Resharper 代码颜色:supercharger 高亮单词 Word highlight with margin Productivity Power Tools 详细介 ...

  4. Docker镜像的获取和推送

    查找镜像 查找镜像的方法有主要有两种,一种是在Docker Hub官方网站查找,网址为https://hub.docker.com/ 另一种方法是在命令行界面中通过docker serach < ...

  5. C#中,Json的序列化和反序列化的几种方式总结

    在这篇文章中,我们将会学到如何使用C#,来序列化对象成为Json格式的数据,以及如何反序列化Json数据到对象. 什么是JSON? JSON (JavaScript Object Notation) ...

  6. 【转】Java工程师成神之路

    针对本文,博主最近在写<成神之路系列文章> ,分章分节介绍所有知识点.欢迎关注. 一.基础篇 1.1 JVM 1.1.1. Java内存模型,Java内存管理,Java堆和栈,垃圾回收 h ...

  7. Java多线程--基础概念

    Java多线程--基础概念 必须知道的几个概念 同步和异步 同步方法一旦开始,调用者必须等到方法调用返回后,才能执行后续行为:而异步方法调用,一旦开始,方法调用就立即返回,调用者不用等待就可以继续执行 ...

  8. Java基础——ArrayList与LinkedList(一)

    一.定义 ArrayList和LinkedList是两个集合类,用于储存一系列的对象引用(references). 引用的格式分别为: ArrayList<String> list = n ...

  9. js-react组件生命周期

    组件的生命周期可分成三个状态: Mounting:已插入真实 DOM Updating:正在被重新渲染 Unmounting:已移出真实 DOM 生命周期的方法有: componentWillMoun ...

  10. 【three.js练习程序】随机生成100个方块

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...