FZU Monthly-201901 tutorial

题目(难度递增) easy easy-medium medium medium-hard hard
思维难度 AHG F B CE D
编码难度 AH CEFG B D

A. RonTanYoYiSen

对于本题,你只需要FOR一遍判断是不是回文串即可。不管一个字符串是不是回文串,只有将它反过来再写一边就可以构造出一个回文串。根据题意,如果是回文串则输出“YES NO”,否则输出“NO YES”。

复杂度\(O(N)\)

B. max position set

Tutorial 1. Bruce force

由于是字典序的缘故,所以我们从第一列开始看到最后一列,如果当前列选择后,不会违背字典序,那么根据贪心思想这一列要,否则显然不能取。这样做 \(N\) 次,每次把新的一列加到前面选出来的字符串后面,check一下是否合法。总复杂度 \(O(N^3)\)。

例子:

adc
bcd
加进第一列
a
b
合法,保留。加入第二列
ad
bc
不合法,撤销。加入第三列
ac
bd
合法,保留。

Tutorial 2. Observe

观察可以发现,每加入一列后,如果第 \(i\) 行的字典序小于第 \(i+1\) 行,那么之后怎么怎么加都不会再对着这两行有影响,即:整个过程中需要考虑的一定是相邻的且所有字符均一样的字符串。所以标记一下 \(N-1\) 个相邻关系中国哪些已经出现偏序,那些还没有,不需要考虑前面的取的字符,只需要比较当前新加进的这一列即可(因为前面一定是一样的)

这样还是做 \(N\) 次,每次比较只花 \(O(N)\) 的时间,总复杂度 \(O(N^2)\)。

C.Palindrome

画图把相同的字符连线会发现就只有4种情况,然后分类讨论一下

  • m1:当m1时,任意长度为1的子串显然都是回文串,所以答案是 \(k^n\)

  • m > n:与m==1情况是一样的

  • m==n:这个时候只需要考虑前半部分,这时候答案分别是 \(k^{n/2}\)(n为偶数),\(k^{n/2+1}\)(n为奇数)

  • m < n: 当m为奇数,答案为\(k^2\),当m为偶数,答案为\(k\)

注:m > n 的时候,显然怎么构造都满足题意

复杂度为\(O(N)\)

D. special square

同样的题目背景,经典题型是求面积最大的全1矩阵。先学习一下这道题的做法,关于这道题,演算法笔记上有非常详尽的分析:http://www.csie.ntnu.edu.tw/~u91029/MaximumSubarray.html#2

这题的做法基本与那道经典题类似,一样的按行or列枚举,通过单调栈去check,核心就是满足条件的矩形四条边都要顶到障碍物,代码基本与原经典题类似,理解原经典题后如还有细节有疑惑可见代码。

复杂度为\(O(N^2)\)

//
// solution.cpp
// special-matrix
//
// Created by 郑浩晖 on 2018/12/19.
// Copyright © 2018 郑浩晖. All rights reserved.
// #include <bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define sz(x) ((int)(x).size())
#define dd(x) cout << #x << " = " << (x) << ", "
#define de(x) cout << #x << " = " << (x) << endl
typedef pair<int, int> pii; const int N = 5e3 + 7;
char s[N][N];
int n, m, up[N][N];
void solve()
{
cin >> n >> m; m++;
for (int i = 0; i < n; i++) { scanf("%s", s[i]); s[i][m-1] = '0'; }
for (int i = 0; i < m; i++) s[n][i]='0';
for (int j = 0; j < m; j++) up[0][j] = s[0][j] == '1';
for (int i = 1; i < n; i++) {
for (int j = 0; j < m; j++) {
up[i][j] = s[i][j] == '1' ? up[i - 1][j] + 1 : 0;
}
}
int ans = 0;
for (int i = 0; i < n; i++) {
stack<pii> stk;
int max_col = -1;
for (int j = 0; j < m; j++) {
int pos = j;
while (!stk.empty() && stk.top().second > up[i][j]) {
if (stk.top().first <= max_col)
ans++;
pos = stk.top().first;
stk.pop();
}
if (s[i + 1][j] == '0') max_col = j;
if (!stk.empty() && stk.top().second == up[i][j]) continue;
if (up[i][j]) stk.push({pos, up[i][j]});
}
}
cout << ans << endl;
} int main()
{
solve();
return 0;
}

E.LiHuaAndPoker

分类讨论

  • K = 1。这个情况,字符串的相对位置不变,所以可能最多只有n种(每一个字母做开头),对n种情况做一个比较即可,复杂度可以是O(n),O(nlogn),O(n2),O(n2logn)均可以通过。
  • K > 1。对于K大于1的所有情况,任何字符串都能调整成他的最小字典序(想想为什么),即对原字符串从小到大排序。对于K>2的排序情况类似冒泡排序。

F.LiHuaAndArray

一个经典的标记技巧(延迟计算)。对所有的[L,R]区间,在L位置标记+1,在R位置标记-1。标记结束后统计每一对奇偶位置的前缀和,前缀和是奇数的就交换位置,是偶数的不做操作。

复杂度O(N)。

G.Assassin

模拟题,分阶段模拟

  • 负一从A点出发追小号
  • 负一追到小号后回A点

注:有个学弟 “小号已经走的路程” 用了int变量,太心疼了

H.DeadlyShoot

这个题目在大一的c语言日常题目中出现过。

Tutorial 1. Bruce force

对着题意模拟一直做数位求和直到一位,然后分类找出最大的一组输出。

Tutorial 2. Math

我们设一个数A的数位和为S,那么易得A和S同余于9。由此,反复求数位和直到只剩一位这个操作等价于对9取模。因此,按照所有数对9的余数进行分类,最后输出余数最大的那一组即可,需要特别注意的是,当某个数能被9整除的时候,他最后得到的数位和是9而不是0。

复杂度为\(O(N)\)

**

**


博主只是友情提供代发服务

FZU Monthly-201901 tutorial的更多相关文章

  1. FZU Monthly-201903 tutorial

    FZU Monthly-201903 tutorial 题目(难度递增) easy easy-medium medium medium-hard hard 思维难度 ABF G CH D E A. D ...

  2. FZU Monthly-201909 tutorial

    FZU Monthly-201909 tutorial 题目(难度递增) easy easy-medium medium medium-hard hard 思维难度 AB CD EF G H A. I ...

  3. FZU Monthly-201906 tutorial

    FZU Monthly-201906 tutorial 题目(难度递增) easy easy-medium medium medium-hard hard 思维难度 AE B DG CF H A. X ...

  4. FZU Monthly-201905 tutorial

    FZU Monthly-201905 tutorial 题目(难度递增) easy easy-medium medium medium-hard hard 思维难度 AB H DG CE F A. C ...

  5. Microsoft Azure Tutorial: Build your first movie inventory web app with just a few lines of code

    Editor’s Note: The following is a guest post from Mustafa Mahmutović, a Microsoft Student Partner wh ...

  6. Monthly数据类型

    Monthly由来 最近在做关于智能财税的项目,大量用到了账期相关的数据操作.项目已有两年历史了,对于账期数据,前辈们用的是DateTime数据类型,即每个月的最后一天就是账期.而用DateTime来 ...

  7. Career Planning:Developers Best Practices Tutorial

    This small tutorial is based on my past 16+ years of experience in software development industry. I ...

  8. [翻译+山寨]Hangfire Highlighter Tutorial

    前言 Hangfire是一个开源且商业免费使用的工具函数库.可以让你非常容易地在ASP.NET应用(也可以不在ASP.NET应用)中执行多种类型的后台任务,而无需自行定制开发和管理基于Windows ...

  9. Monthly Income Report – August 2016

    原文链接:https://marcoschwartz.com/monthly-income-report-august-2016/ Every month, I publish a report of ...

随机推荐

  1. niftynet Demo分析 -- brain_parcellation

    brain_parcellation 论文详细介绍 通过从脑部MR图像中分割155个神经结构来验证该网络学习3D表示的效率 目标:设计一个高分辨率和紧凑的网络架构来分割体积图像中的精细结构 特点:大多 ...

  2. [开源] .NET数据库ORM类库 Insql

    介绍 新年之际,给大家介绍个我自己开发的ORM类库Insql.TA是一个轻量级的.NET ORM类库 . 对象映射基于Dapper , Sql配置灵感来自于Mybatis.简单优雅性能是TA的追求. ...

  3. HDU 1535 Invitation Cards(逆向思维+邻接表+优先队列的Dijkstra算法)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1535 Problem Description In the age of television, n ...

  4. GCD之同步异步

    博客地址:http://blog.csdn.net/chaoyuan899/article/details/12554603

  5. css布局记录之双飞翼布局、圣杯布局

    双飞翼布局和圣杯布局是比较常用的布局方式,都是为了实现一行三列,并且两侧列固定宽度,中间列宽度自适应的效果:直接上代码记录下: <!DOCTYPE html> <html lang= ...

  6. [日常] Go语言圣经--作用域,基础数据类型,整型

    go语言圣经-作用域 1.一个声明语句将程序中的实体和一个名字关联,比如一个函数或一个变量 2.一个变量的生命周期是指程序运行时变量存在的有效时间段;声明语句的作用域对应的是一个源代码的文本区域,它是 ...

  7. Java基础——ArrayList与LinkedList(一)

    一.定义 ArrayList和LinkedList是两个集合类,用于储存一系列的对象引用(references). 引用的格式分别为: ArrayList<String> list = n ...

  8. sqlserver--install/uninstall

    2017 express版本 安装: https://jingyan.baidu.com/article/76a7e409077997fc3a6e1559.html https://www.cnblo ...

  9. Spring Boot配置Mybatis

    在pom里加了mybatis的依赖后,在application.properties加上: mybatis.config-location=classpath:mybatis-config.xml m ...

  10. Software-Defined Networking之搬砖的故事

    在很久很久以前,有一个村子. 村里的每一户,都有一个男人和一个女人. 每一户,都以搬砖为生. 从不同的地方,搬到不同的地方. 男人负责搬砖,女人负责告诉男人往哪搬. 每个家庭,都服从村委会的指挥. 村 ...