机器学习进阶-图像形态学操作-膨胀操作 1.cv2.dilate(进行膨胀操作)
1.cv2.dilate(src, kernel, iteration)
参数说明: src表示输入的图片, kernel表示方框的大小, iteration表示迭代的次数
膨胀操作原理:存在一个kernel,在图像上进行从左到右,从上到下的平移,如果方框中存在白色,那么这个方框内所有的颜色都是白色
代码:
1.读取带有毛躁的图片
2.使用cv2.erode进行腐蚀操作
3.使用cv2.dilate进行膨胀操作
import cv2
import numpy as np # 1.读入图片
img = cv2.imread('dige.png')
cv2.imshow('original', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
kernel = np.ones((5, 5), np.uint8)

# 2.进行腐蚀操作,去除边缘毛躁
erosion = cv2.erode(img, kernel, iterations=1)
cv2.imshow('erosion', erosion)
cv2.waitKey(0)
cv2.destroyAllWindows()
、
# 3. 进行膨胀操作
dilate = cv2.dilate(erosion, kernel, iterations=1)
cv2.imshow('dilate', dilate)
cv2.waitKey(0)
cv2.destroyAllWindows()

机器学习进阶-图像形态学操作-膨胀操作 1.cv2.dilate(进行膨胀操作)的更多相关文章
- 机器学习进阶-图像形态学操作-梯度运算 cv2.GRADIENT(梯度运算-膨胀图像-腐蚀后的图像)
1.op = cv2.GRADIENT 用于梯度运算-膨胀图像-腐蚀后的图像 梯度运算:表示的是将膨胀以后的图像 - 腐蚀后的图像,获得了最终的边缘轮廓 代码: 第一步:读取pie图片 第二步:进行腐 ...
- 机器学习进阶-图像形态学操作-开运算与闭运算 1.cv2.morphologyEx(进行各类形态学变化) 2.op=cv2.MORPH_OPEN(先腐蚀后膨胀) 3.op=cv2.MORPH_CLOSE(先膨胀后腐蚀)
1.cv2.morphologyEx(src, op, kernel) 进行各类形态学的变化 参数说明:src传入的图片,op进行变化的方式, kernel表示方框的大小 2.op = cv2.MO ...
- 机器学习进阶-图像形态学操作-腐蚀操作 1.cv2.erode(进行腐蚀操作)
1.cv2.erode(src, kernel, iteration) 参数说明:src表示的是输入图片,kernel表示的是方框的大小,iteration表示迭代的次数 腐蚀操作原理:存在一个ker ...
- 机器学习进阶-图像特征sift-SIFT特征点 1.cv2.xfeatures2d.SIFT_create(实例化sift) 2. sift.detect(找出关键点) 3.cv2.drawKeypoints(画出关键点) 4.sift.compute(根据关键点计算sift向量)
1. sift = cv2.xfeatures2d.SIFT_create() 实例化 参数说明:sift为实例化的sift函数 2. kp = sift.detect(gray, None) 找出 ...
- 机器学习进阶-图像形态学变化-礼帽与黑帽 1.cv2.TOPHAT(礼帽-原始图片-开运算后图片) 2.cv2.BLACKHAT(黑帽 闭运算-原始图片)
1.op = cv2.TOPHAT 礼帽:原始图片-开运算后的图片 2. op=cv2.BLACKHAT 黑帽: 闭运算后的图片-原始图片 礼帽:表示的是原始图像-开运算(先腐蚀再膨胀)以后的图像 ...
- 机器学习进阶-图像特征harris-角点检测 1.cv2.cornerHarris(进行角点检测)
1.cv2.cornerHarris(gray, 2, 3, 0.04) # 找出图像中的角点 参数说明:gray表示输入的灰度图,2表示进行角点移动的卷积框,3表示后续进行梯度计算的sobel算子 ...
- 机器学习进阶-图像梯度运算-Sobel算子 1. cv2.Sobel(使用Sobel算子进行计算) 2. cv2.convertScalerAbs(将像素点进行绝对值的计算)
1.cv2.Sobel(src, ddepth, dx, dy, ksize) 进行sobel算子计算 参数说明:src表示当前图片,ddepth表示图片深度,这里使用cv2.CV_64F使得结果可 ...
- 机器学习进阶-项目实战-信用卡数字识别 1.cv2.findContour(找出轮廓) 2.cv2.boudingRect(轮廓外接矩阵位置) 3.cv2.threshold(图片二值化操作) 4.cv2.MORPH_TOPHAT(礼帽运算突出线条) 5.cv2.MORPH_CLOSE(闭运算图片内部膨胀) 6. cv2.resize(改变图像大小) 7.cv2.putText(在图片上放上文本)
7. cv2.putText(img, text, loc, text_font, font_scale, color, linestick) # 参数说明:img表示输入图片,text表示需要填写的 ...
- 机器学习进阶-图像金字塔与轮廓检测-模板匹配(单目标匹配和多目标匹配)1.cv2.matchTemplate(进行模板匹配) 2.cv2.minMaxLoc(找出矩阵最大值和最小值的位置(x,y)) 3.cv2.rectangle(在图像上画矩形)
1. cv2.matchTemplate(src, template, method) # 用于进行模板匹配 参数说明: src目标图像, template模板,method使用什么指标做模板的匹配 ...
随机推荐
- Android开发之Activity生命周期篇
一.Activity: 1.Activity:Activity是一个与用记交互的系统模块,几乎所有的Activity都是和用户进行交互的. 2.在Android中Activity主要是用来做控制的,它 ...
- bzoj2856: [ceoi2012]Printed Circuit Board
Description 给出一个N个顶点的简单多边形,对于每个顶点,假如它和原点连成的线段只在这个顶点处和多边形相交,就称为满足要求的顶点.你的任务是输出所有满足要求的顶点编号. Input 第一行一 ...
- maven不同环境的profile配置
1.开发的时候经常需要加载不同的环境,比如本地开发环境dev,生产环境product.如果需要手动去修改的话就太麻烦了,自己实现了maven资源替换,然后多环境下的配置文件管理的demo,在此贴出来. ...
- Java-Runoob-高级教程-实例-数组:10. Java 实例 – 查找数组中的重复元素-un
ylbtech-Java-Runoob-高级教程-实例-数组:10. Java 实例 – 查找数组中的重复元素 1.返回顶部 1. Java 实例 - 查找数组中的重复元素 Java 实例 以下实例 ...
- 关于string.Template的简单介绍
一.简介 string模块定义了一种新字符串类型Template,它简化了特定的字符串置换操作. 何谓“简化”?我们可以先想一下我们之前比较常用的有关字符串的“置换”操作有哪些:一种是利用%操作符实现 ...
- [UE4]一分钟实现聊天系统
天系统:客户端发消息到服务器端,服务器端把收到的消息广播到所有客户端. 由于聊天对象需要支持“可复制”和每个客户端都发给一个,所以GameInstance.GameModeGameState都不适合存 ...
- [UE4]先报告后广播模式
解决客户端射击,在服务器端和其他客户端看不到的问题. 一.把要广播的操作封装成一个事件(函数不支持网络属性),选择“多路传送” 二.创建一个事件,选择“在服务器上运行” 总结:从客户端执行的事件报告到 ...
- SCCM2012 R2实战系列之四:初始化配置
在之前的文章中,我们已经完成了SCCM 2012 R2 独立主站点的部署.为了客户端代理软件的顺利安装和OSD操作系统的分发,我们需要配置组策略及DHCP服务.在本系列的第四部分,跟大家一起分享下如何 ...
- 在线学习和在线凸优化(online learning and online convex optimization)—FTL算法5
最自然的学习规则是使用任何在过去回合中损失最小的向量. 这与Consistent算法的精神相同,它在在线凸优化中通常被称为Follow-The-Leader,最小化累积损失. 对于任何t: 我们谈到了 ...
- python装饰器1
目的:在不修改原来函数代码的前提下,使用这个功能,可以使得之后这个函数被调用时增加额外的功能. #2.定义装饰器 def deco (fun): print "i am deco,i can ...