[SHOI2012]随机树[期望dp]
题意
初始 \(1\) 个节点,每次选定一个叶子节点并加入两个儿子直到叶子总数为 \(n\),问叶子节点深度和的平均值的期望以及最大叶子深度的期望。
\(n\leq 100\) .
分析
对于第一问,根据答案定义状态 \(f_i\) 表示有 \(i\) 个叶子节点的深度和平均值的期望。
考虑对于之前的每一棵树对期望的贡献,记其发生的概率为 \(p\) ,深度和为 \(w\) ,有 \(i-1\) 个叶子节点。贡献为 \(p*\frac{w}{i-1}\) 。现在要多选定一个叶子节点有 \(i-1\) 种方案,总贡献可以写成:
\]
也就有\(f_i=f_{i-1}+\frac{2}{i}\)。
对于第二问,定义状态 \(g_{i,j}\) 表示子树内有 \(i\) 个叶子,最大深度为 \(j\) 的概率。
再定义 \(p_{i,j}\) 表示 \(i\) 个叶子节点有 \(j\) 个在左子树的概率,转移:
\]
\(p\) 的递推直接枚举最后一个叶子是接在左子树还是右子树即可。
可以前缀和优化,总时间复杂度为 \(O(n^3)\).
代码
#include<bits/stdc++.h>
using namespace std;
#define go(u) for(int i=head[u],v=e[i].to;i;i=e[i].last,v=e[i].to)
#define rep(i,a,b) for(int i=a;i<=b;++i)
#define pb push_back
typedef long long LL;
inline int gi(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') f=-1;ch=getchar();}
while(isdigit(ch)){x=(x<<3)+(x<<1)+ch-48;ch=getchar();}
return x*f;
}
template<typename T>inline bool Max(T &a,T b){return a<b?a=b,1:0;}
template<typename T>inline bool Min(T &a,T b){return b<a?a=b,1:0;}
const int N=104;
int type,n;
namespace task1{
double f[N];
void solve(){
f[1]=0;
rep(i,2,n) f[i]=f[i-1]+2.0/i;
printf("%.6lf\n",f[n]);
}
}
namespace task2{
double f[N][N],s[N][N],p[N][N];
void solve(){
p[2][1]=1;
rep(i,3,n)rep(j,1,i-1)
p[i][j]=( p[i-1][j-1]*1.0*(j-1)/(i-1) + p[i-1][j]*1.0*(i-1-j)/(i-1));
f[1][0]=1;rep(j,0,n) s[1][j]=(j?s[1][j-1]:0)+f[1][j];
f[2][1]=1;rep(j,1,n) s[2][j]=s[2][j-1]+f[2][j];
rep(i,3,n){
rep(j,1,i-1){
rep(l,1,i-1)
f[i][j]+=p[i][l]*((j-1>=0?s[l][j-1]:0)*(j-1>=0?f[i-l][j-1]:0)+(j-1>=0?f[l][j-1]:0)*(j-2>=0?s[i-l][j-2]:0));
s[i][j]=s[i][j-1]+f[i][j];
}
fill(s[i]+i,s[i]+1+n,s[i][i-1]);
}
double ans=0;
for(int j=0;j<=n;++j) ans+=f[n][j]*j;
printf("%.6lf\n",ans);
}
}
int main(){
type=gi(),n=gi();
if(type==1) task1::solve();
else task2::solve();
return 0;
}
[SHOI2012]随机树[期望dp]的更多相关文章
- luogu P3830 [SHOI2012]随机树 期望 dp
LINK:随机树 非常经典的期望dp. 考虑第一问:设f[i]表示前i个叶子节点的期望平均深度. 因为期望具有线性性 所以可以由每个叶子节点的期望平均深度得到总体的. \(f[i]=(f[i-1]\c ...
- 洛谷P3830 [SHOI2012]随机树(期望dp)
题面 luogu 题解 第一问: 设\(f[i]\)表示\(i\)步操作后,平均深度期望 \(f[i] = \frac {f[i - 1] * (i - 1)+f[i-1]+2}{i}=f[i-1]+ ...
- luoguP3830 [SHOI2012]随机树 期望概率 + 动态规划 + 结论
题意非常的复杂,考虑转化一下: 每次选择一个叶节点,删除本叶节点(深度为$dep$)的同时,加入两个深度为$dep + 1$的叶节点,重复$n$轮 首先考虑第$1$问,(你看我这种人相信数据绝对是最大 ...
- P3830 [SHOI2012]随机树 题解
P3830 随机树 坑题,别人的题解我看了一个下午没一个看得懂的,我还是太弱了. 题目链接 P3830 [SHOI2012]随机树 题目描述 输入输出格式 输入格式: 输入仅有一行,包含两个正整数 q ...
- [SHOI2012]随机树
[SHOI2012]随机树 题目大意( 网址戳我! ) 随机树是一颗完全二叉树,初始状态下只有一个节点. 随机树的生成如下:每次随机选择一个叶子节点,扩展出两个儿子. 现在给定一个正整数\(n\)(\ ...
- P3830 [SHOI2012]随机树
P3830 [SHOI2012]随机树 链接 分析: 第一问:f[i]表示有i个叶子结点的时候的平均深度,$f[i] = \frac{f[i - 1] + 2 + f[i - 1] * (i - 1) ...
- bzoj2830: [Shoi2012]随机树
题目链接 bzoj2830: [Shoi2012]随机树 题解 q1好做 设f[n]为扩展n次后的平均深度 那么\(f[n] = \frac{f[n - 1] * (n - 1) + f[n - 1] ...
- 洛谷P3830 随机树(SHOI2012)概率期望DP
题意:中文题,按照题目要求的二叉树生成方式,问(1)叶平均深度 (2)树平均深度 解法:这道题看完题之后完全没头绪,无奈看题解果然不是我能想到的qwq.题解参考https://blog.csdn.ne ...
- 洛谷3830 [SHOI2012]随机树 【概率dp】
题目 输入格式 输入仅有一行,包含两个正整数 q, n,分别表示问题编号以及叶结点的个数. 输出格式 输出仅有一行,包含一个实数 d,四舍五入精确到小数点后 6 位.如果 q = 1,则 d 表示叶结 ...
随机推荐
- LeetCode题解之Copy List with Random Pointer
1.题目描述 2.问题分析 首先要完成一个普通的单链表的深度复制,然后将一个旧的单链表和新的单链表的节点使用map对应起来,最后,做一次遍历即可. 3.代码 RandomListNode *copyR ...
- MATLAB中批量导入.mat文件(每个文件多变量)
一.新建MATLAB script(.m文件):readall_mat.m 二.代码如下: function data = readall_mat(path) % READALL_MAT 读取所有文件 ...
- gh-ost和pt-osc性能对比
haughty_xiao 基于MySQL row格式的复制现在趋于主流,因此可以使用此格式的binlog来跟踪改变而不是触发器.与percona toolkit的pt-online-schem ...
- Tidb数据库报错:Transaction too large
Tidb是一个支持ACID的分布式数据库,当你导入一个非常大的数据集时,这时候产生的事务相当严重,并且Tidb本身对事物的大小也是有一个严格的控制. 有事务大小的限制主要在于 TiKV 的实现用了一致 ...
- November 15th, 2017 Week 46th Wednesday
Of all the tribulations in this world, boredom is the one most hard to bear. 所有的苦难中,无聊是最难以忍受的. When ...
- python class根据配置自定义函数
今天看到了一种有趣的定义函数的方式: class Test(object): def define_get_methods(cls, method_name, path): def inner_get ...
- MySQL备份与恢复.md
备份与恢复使用的命令 mysqldump 常用选项 -A, --all-databases:导出全部数据库 -B, --databases:导出几个数据库.参数后面所有名字参量都被看作数据库名. -- ...
- Universal-Image-Loader源码分析(一)——ImageLoaderConfiguration分析
UIl与Volley一样是非常古老的框架,UIL实现了从网络获取图片,对图片进行缓存,以及根据个性化的设置来将图片加载到ImageView上. 这篇文章 主要分析UIl在初始化配置的源码 UIL初始化 ...
- tomcat Win10 配置环境变量详解
在Win10系统总该如何配偶之tomcat 环境变量?今天win10之家给大家带来了关于win10系统中配置tomcat环境的操作方法.在配置之前我们需要做以下几点: 步骤:安装和配置好了Java 的 ...
- 7、JVM--虚拟机类加载机制
7.1.概述 再类文件结构中 在Class文件中描述的各种信息,最终都需要加载到虚拟机中之后才能运行和使用. 而虚拟机如何加载这些Class文件?Class文件中的信息进入到虚拟机后会发生什么变化? ...