【LOJ】#2183. 「SDOI2015」序列统计
题解
这个乘积比较麻烦,转换成原根的指数乘法就相当于指数加和了,可以NTT优化
注意判掉0
代码
#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define pdi pair<db,int>
#define mp make_pair
#define pb push_back
#define enter putchar('\n')
#define space putchar(' ')
#define eps 1e-8
#define mo 974711
#define MAXN 1000005
//#define ivorysi
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
const int MOD = 1004535809,MAXL = (1 << 14);
int W[MAXL + 5],N,M,x,S;
int pos[8005],pw[8005],f[MAXL + 5],r[MAXL + 5],tmp[MAXL + 5];
int inc(int a,int b) {
return a + b >= MOD ? a + b - MOD : a + b;
}
int fpow(int x,int c,int M = MOD) {
int res = 1,t = x;
while(c) {
if(c & 1) res = 1LL * res * t % M;
t = 1LL * t * t % M;
c >>= 1;
}
return res;
}
int primitive_root(int p) {
for(int g = 2 ; ; ++g) {
bool flag = 1;
for(int i = 2 ; i <= (p - 1) / i ; ++i) {
if((p - 1) % i == 0) {
if(fpow(g,(p - 1) / i,p) == 1 || fpow(g,i,p) == 1) {
flag = 0;
break;
}
}
}
if(flag) return g;
}
}
void NTT(int *p,int L,int on) {
for(int i = 1 , j = L >> 1 ; i < L - 1 ; ++i) {
if(i < j) swap(p[i],p[j]);
int k = L >> 1;
while(j >= k) {
j -= k;
k >>= 1;
}
j += k;
}
for(int h = 2 ; h <= L ; h <<= 1) {
int wn = W[(MAXL + on * MAXL / h) % MAXL];
for(int k = 0 ; k < L ; k += h) {
int w = 1;
for(int j = k ; j < k + h / 2 ; ++j) {
int u = p[j],t = 1LL * p[j + h / 2] * w % MOD;
p[j] = inc(u,t);
p[j + h / 2] = inc(u,MOD - t);
w = 1LL * w * wn % MOD;
}
}
}
if(on == -1) {
int InvL = fpow(L,MOD - 2);
for(int i = 0 ; i < L ; ++i) p[i] = 1LL * p[i] * InvL % MOD;
}
}
void Solve() {
read(N);read(M);read(x);read(S);
W[0] = 1;
W[1] = fpow(3,(MOD - 1) / MAXL);
for(int i = 2 ; i < MAXL ; ++i) {
W[i] = 1LL * W[i - 1] * W[1] % MOD;
}
int t = primitive_root(M);
pw[0] = 1;pw[1] = t;
for(int i = 2 ; i < M ; ++i) pw[i] = 1LL * pw[i - 1] * pw[1] % M;
for(int i = 0 ; i < M - 1 ; ++i) pos[pw[i]] = i;
int k;
for(int i = 1 ; i <= S ; ++i) {
read(k);
if(!k) continue;
f[pos[k]] = 1;
}
k = 1;
while(k <= 2 * M) k <<= 1;
r[0] = 1;
while(N) {
NTT(f,k,1);
if(N & 1) {
NTT(r,k,1);
for(int i = 0 ; i < k ; ++i) r[i] = 1LL * r[i] * f[i] % MOD;
NTT(r,k,-1);
for(int i = M - 1 ; i < k ; ++i) {r[i % (M - 1)] = inc(r[i % (M - 1)],r[i]);r[i] = 0;}
}
for(int i = 0 ; i < k ; ++i) f[i] = 1LL * f[i] * f[i] % MOD;
NTT(f,k,-1);
for(int i = M - 1 ; i < k ; ++i) {f[i % (M - 1)] = inc(f[i % (M - 1)],f[i]);f[i] = 0;}
N >>= 1;
}
out(r[pos[x]]);enter;
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Solve();
return 0;
}
【LOJ】#2183. 「SDOI2015」序列统计的更多相关文章
- LOJ #2183「SDOI2015」序列统计
有好多好玩的知识点 LOJ 题意:在集合中选$ n$个元素(可重复选)使得乘积模$ m$为$ x$,求方案数对$ 1004535809$取模 $ n<=10^9,m<=8000且是质数,集 ...
- Loj #3059. 「HNOI2019」序列
Loj #3059. 「HNOI2019」序列 给定一个长度为 \(n\) 的序列 \(A_1, \ldots , A_n\),以及 \(m\) 个操作,每个操作将一个 \(A_i\) 修改为 \(k ...
- loj #2051. 「HNOI2016」序列
#2051. 「HNOI2016」序列 题目描述 给定长度为 n nn 的序列:a1,a2,⋯,an a_1, a_2, \cdots , a_na1,a2,⋯,an,记为 a[1: ...
- LOJ 3158: 「NOI2019」序列
题目传送门:LOJ #3158. 题意简述: 给定两个长度为 \(n\) 的正整数序列 \(a,b\),要求在每个序列中都选中 \(K\) 个下标,并且要保证同时在两个序列中都被选中的下标至少有 \( ...
- LOJ 3059 「HNOI2019」序列——贪心与前后缀的思路+线段树上二分
题目:https://loj.ac/problem/3059 一段 A 选一个 B 的话, B 是这段 A 的平均值.因为 \( \sum (A_i-B)^2 = \sum A_i^2 - 2*B \ ...
- loj#2002. 「SDOI2017」序列计数(dp 矩阵乘法)
题意 题目链接 Sol 质数的限制并没有什么卵用,直接容斥一下:答案 = 忽略质数总的方案 - 没有质数的方案 那么直接dp,设\(f[i][j]\)表示到第i个位置,当前和为j的方案数 \(f[i ...
- Loj #2192. 「SHOI2014」概率充电器
Loj #2192. 「SHOI2014」概率充电器 题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器: 「采用全新纳米级加工技术,实现元件与导线能否通电完 ...
- Loj #3056. 「HNOI2019」多边形
Loj #3056. 「HNOI2019」多边形 小 R 与小 W 在玩游戏. 他们有一个边数为 \(n\) 的凸多边形,其顶点沿逆时针方向标号依次为 \(1,2,3, \ldots , n\).最开 ...
- Loj 3058. 「HNOI2019」白兔之舞
Loj 3058. 「HNOI2019」白兔之舞 题目描述 有一张顶点数为 \((L+1)\times n\) 的有向图.这张图的每个顶点由一个二元组 \((u,v)\) 表示 \((0\le u\l ...
随机推荐
- MT【199】映射的个数
(2018中科大自招)设$S=\{1,2,3,4,5\}$则满足$f(f(x))=x$的映射:$S \longrightarrow S$的个数____解答:由于$a\ne b$时必须满足$f(a)=b ...
- 纯CSS3实现打火机火焰动画
HTML5已经越来越流行起来了,尤其是移动互联网的发展,更是带动了HTML5的迅猛发展,我们也是时候学习HTML5了,以防到时候落伍.今天给大家介绍10款效果惊艳的HTML5应用,方便大家学习,也将应 ...
- 【BZOJ1294】[SCOI2009]围豆豆(动态规划,状压)
[BZOJ1294][SCOI2009]围豆豆(动态规划,状压) 题面 BZOJ 洛谷 题解 首先考虑如何判断一个点是否在一个多边形内(不一定是凸的),我们从这个点开始,朝着一个方向画一条射线,看看它 ...
- 【BZOJ1862】[ZJOI2006]游戏排名系统 (Splay)
[BZOJ1862][ZJOI2006]游戏排名系统 (Splay) 题面 BZOJ 洛谷 题解 双倍经验题
- 敏捷持续集成(Jenkins)
在前面已经完成git和gitlab的相关操作 1.持续集成的概念: 1. 什么是持续集成: 持续集成是一种软件开发实践,即团队开发成员经常集成他们的工作,通过每个成员每天至少集成一次,也就意味着每天可 ...
- 【洛谷P1341】无序字母对
题目大意:给定 n 个各不相同的无序字母对(区分大小写,无序即字母对中的两个字母可以位置颠倒).请构造一个有 n+1 个字母的字符串使得每个字母对都在这个字符串中出现. 题解:每个无需字母对可以看成无 ...
- linux sed文本
sed介绍 sed(stream editor)是一种非交互式的流编辑器,通过多种转换修改流经它的文本.默认情况下,sed不会改变原文件本身,而只是对流经sed命令的文本进行修改,并将修改后的结果打印 ...
- 实战:使用SVN+apache搭建一个版本控制服务器
今天讲的内容: 实战:使用SVN+apache搭建一个版本控制服务器 每天: 10:00 晚上:21:00 服务端:xuegod63.cn IP:192.168.10.63 服务概述: SVN(s ...
- 在CentOS上导出JVM内存信息
首先看下Tomcat的进程Id: [root@iZ25Z ~]# ps aux | grep java www 2111 4.0 23.5 1637648 452756 ? Sl 10:12 4:35 ...
- VMware ESXI6.0服务器安装
1.制作一个ESXI6.0的系统安装盘 2.服务器启动后加载VMware ESXi 6.0的ISO文件,开始安装. 3.ESXi引导装入程序,VMware ESXi引导过程,在屏幕上方显示的版本号.内 ...