BZOJ1855或洛谷2569 [SCOI2010]股票交易
一道单调队列优化\(DP\)
BZOJ原题链接
洛谷原题链接
朴素的\(DP\)方程并不难想。
定义\(f[i][j]\)表示到第\(i\)天,手上持有\(j\)股时的最大收益。
转移方程可以分成四个部分。
- 第\(i\)天为空手时买股票
\(\qquad\qquad f[i][j]=-AP_i\times j\)
- 第\(i\)天不进行交易
\(\qquad\qquad f[i][j]=\max\{f[i][j],f[i-1][j]\}\)
- 第\(i\)天在之前基础上买
\(\qquad\qquad f[i][j]=\max\limits_{k=\max\{j-AS_i,1\}}^{j-1}\{f[i][j],f[i-w-1][k]-AP_i\times (j-k)\}\)
- 第\(i\)天在之前基础上卖
\(\qquad\qquad f[i][j]=\max\limits_{k=j+1}^{\min\{j+BS_i,MaxP\}}\{f[i][j],f[i-w-1][k]+BP_i\times (k-j)\}\)
显然决策增减满足单调性,可以用单调队列维护,注意第\(4\)项要倒序才能维护。
#include<cstdio>
#include<cstring>
using namespace std;
const int N = 2010;
int f[N][N], AP[N], BP[N], AS[N], BS[N], q[N];
int re()
{
int x = 0;
char c = getchar();
bool p = 0;
for (; c<'0' || c>'9'; c = getchar())
p = (c == '-' || p) ? 1 : 0;
for (; c >= '0'&&c <= '9'; c = getchar())
x = x * 10 + (c - '0');
return p ? -x : x;
}
inline int minn(int x, int y)
{
return x < y ? x : y;
}
inline int maxn(int x, int y)
{
return x > y ? x : y;
}
int main()
{
int i, j, n, m, w, l, r;
n = re();
m = re();
w = re();
memset(f, 250, sizeof(f));
for (i = 1; i <= n; i++)
{
AP[i] = re();
BP[i] = re();
AS[i] = re();
BS[i] = re();
f[i][0] = 0;
}
for (i = 1; i <= n; i++)
{
for (j = 0; j <= AS[i]; j++)
f[i][j] = -AP[i] * j;
for (j = m; j >= 0; j--)
f[i][j] = maxn(f[i][j], f[i - 1][j]);
if (i - w - 1 > 0)
{
for (r = j = 0, l = 1; j <= m; j++)
{
while (l <= r && q[l] < j - AS[i])
l++;
while (l <= r && f[i - w - 1][j] + AP[i] * j >= f[i - w - 1][q[r]] + AP[i] * q[r])
r--;
q[++r] = j;
if (l <= r)
f[i][j] = maxn(f[i][j], f[i - w - 1][q[l]] - AP[i] * (j - q[l]));
}
for (r = 0, l = 1, j = m; j >= 0; j--)
{
while (l <= r && q[l] > j + BS[i])
l++;
while (l <= r && f[i - w - 1][j] + BP[i] * j >= f[i - w - 1][q[r]] + BP[i] * q[r])
r--;
q[++r] = j;
if (l <= r)
f[i][j] = maxn(f[i][j], f[i - w - 1][q[l]] + BP[i] * (q[l] - j));
}
}
}
printf("%d", f[n][0]);
return 0;
}
BZOJ1855或洛谷2569 [SCOI2010]股票交易的更多相关文章
- 洛谷P2569 [SCOI2010]股票交易
P2569 [SCOI2010]股票交易 题目描述 最近lxhgww又迷上了投资股票,通过一段时间的观察和学习,他总结出了股票行情的一些规律. 通过一段时间的观察,lxhgww预测到了未来T天内某只股 ...
- 洛谷 P2569[SCOI2010]股票交易(动规+单调队列)
//只能写出裸的动规,为什么会有人能想到用单调队列优化Orz 题目描述 最近lxhgww又迷上了投资股票,通过一段时间的观察和学习,他总结出了股票行情的一些规律. 通过一段时间的观察,lxhgww预测 ...
- 洛谷P2569 [SCOI2010]股票交易(单调队列)
传送门 惭愧……这种题目都没看出来…… 首先,我们用$dp[i][j]$表示在第$i$天,手上有$j$股时的最大收益 第一,我们可以直接买股票,即$dp[i][j]=-j*AP_i$,这个直接计算即可 ...
- 【解题报告】洛谷 P2571 [SCOI2010]传送带
[解题报告]洛谷 P2571 [SCOI2010]传送带今天无聊,很久没有做过题目了,但是又不想做什么太难的题目,所以就用洛谷随机跳题,跳到了一道题目,感觉好像不是太难. [CSDN链接](https ...
- BZOJ1856或洛谷1641 [SCOI2010]生成字符串
BZOJ原题链接 洛谷原题链接 可以将\(1\)和\(0\)的个数和看成是\(x\)轴坐标,个数差看成\(y\)轴坐标. 向右上角走,即\(x\)轴坐标\(+1\),\(y\)轴坐标\(+1\),表示 ...
- 洛谷 P1641 [SCOI2010]生成字符串
洛谷 这题一看就是卡塔兰数. 因为\(cnt[1] \leq cnt[0]\),很显然的卡塔兰嘛! 平时我们推导卡塔兰是用一个边长为n的正方形推的, 相当于从(0,0)点走到(n,n)点,向上走的步数 ...
- 洛谷 P1640 [SCOI2010]连续攻击问题
洛谷 一句话题意: 每个武器有两种属性,每种武器只能选择一种属性,从属性1连续递增才算攻击,求最大连续攻击次数. 因为同学告诉我这是二分图最大匹配,自然就往那个方向去想. 那么怎么建图呢? 每个武器只 ...
- 卡特兰数 洛谷P1641 [SCOI2010]生成字符串
卡特兰数 参考博客 介绍 卡特兰数为组合数学中的一种特殊数列,用于解决一类特殊问题 设\(f(n)\)为卡特兰数的第n项 其通项公式为 \[f(n)=\frac{2n\choose n}{n+1} \ ...
- 洛谷 P1640 [SCOI2010]连续攻击游戏 解题报告
P1640 [SCOI2010]连续攻击游戏 题目描述 lxhgww最近迷上了一款游戏,在游戏里,他拥有很多的装备,每种装备都有2个属性,这些属性的值用[1,10000]之间的数表示.当他使用某种装备 ...
随机推荐
- 学习JS的心路历程-函式(一)
前几天有间单提到该如何声明函式及在Hositing中会发生什么事,但是函式的奥妙不仅于此. 身为一个使用JS的工程师,我们一定要熟悉函式到比恋人还熟! 这几天将会把函式逐一扒开跟各位一起探讨其中的奥妙 ...
- php图片转base64
/*读取问价家图片生澈哥哥js文件 */header("Access-Control-Allow-Origin: *");$i=0;$handle = opendir('./ima ...
- 用R画韦恩图
#导入R包 library(grid)library(futile.logger)library(VennDiagram) #建立测试数据集 A = 1:150B = c(121:170,300:32 ...
- STL::bitset
bitset: A bitset stores bits.大小通过参数传递,在编译时确定.可变的可参考 vector<bool>. constructor default: integer ...
- 在timer的时候突然改变影片简介,先前的不暂停
import flash.display.MovieClip; import flash.utils.Timer; import flash.events.TimerEvent; var hinder ...
- poj1019(打表预处理+数学)
题目链接:http://poj.org/problem?id=1019 题意:对于序列1121231234...,求第i个数字(i<=2147483647). 思路:记第一组为1,第二组为12, ...
- 第三章 列表(b)无序列表
- Python+Selenium学习--窗口切换及操作元素
场景 有时候我们在测试一个web 应用时会出现多个浏览器窗口的情况,在selenium1.0 中这个问题比较难处理.webdriver 提供了相关相方法可以很轻松的在多个窗口之间切换并操作不同窗口上的 ...
- GIRDVIEW 控件绑定数据后 后台c#控制隐藏某列
gv_EnterpriseInfo.DataSource = pageResult.Data; gv_EnterpriseInfo.DataBind(); 之后加判断条件: if (true) { g ...
- 【js语法】array
array操作说明 链接:http://www.w3school.com.cn/jsref/jsref_obj_array.asp 函数说明: concat():把两个array连接起来 join() ...