迷宫问题的C语言求解
1 .Preface
/**
* There have been many data to introduce the algorithm. So I will try to simply explain it and explain the program in detail.
*/
/**
* Prerequisites:
* 1). a survival skill in CPP programing language.
* 2). a curious mind for maze problem.
*
*/
//Image this, you have maze, just as following:
/*
*
* 1 1 1 1 1 1 1 1 1 1
*-> 1 0 0 1 0 0 0 1 0 1
* 1 0 0 1 0 0 0 1 0 1
* 1 0 0 0 0 1 1 0 0 1
* 1 0 1 1 1 0 0 0 0 1
* 1 0 0 0 1 0 0 0 0 1
* 1 0 1 0 0 0 1 0 0 1
* 1 0 1 1 1 0 1 1 0 1
* 1 1 0 0 0 0 0 0 0 1 -->exit
* 1 1 1 1 1 1 1 1 1 1
*/
//the entrance is [1,1], and exit is [8,8].
//How could you find a valid way to get through this?
/*
* when start with [1, 1] , we will arrive some special position, which provide us many paths .For example, if we reside in [1, 1], there have two paths for us, [ 2, 1] and [ 1, 2]. Those speical nodes connect each other and compose a complexity topology network.
*
*
* To solve this problem, we could do as following:
* step 1: just go ahead as one pleases , but record all nodes which has arrived.
* step 2: if arrive a dead end, that mean you was choose a wrong path. So you need to go back the same way, find the last node which you did a choice, and step into another choice.
* step 3: Then repeat step 1 untill arrive the exit.
*
*/
2.Source code
/**
* Now, check this source code. I divided this problem with three parts: a stack, a map, and a boy who provide solve solution. First, let us put that poor little boy into this maze.( brutally )
*/
2. 1 Tool--stack.h
/**
* To traverse the network totally, the little boy must ensure he can go back the same way. So he save all of nodes,which he has been arrived,into a stack. The feature of stack is
* first in, first out. That's what we lack.
*/
/**
* For make this stack more useful, a class template is created.
*/
#ifndef STACK_H
#define STACK_H typedef int INDEX; template < class ELEM>
class STACK{
public:
STACK( int capacity); //capacity
~STACK( void);
/*
* some basic operation function.
*/
bool pop( ELEM &item);
bool push( ELEM item);
/*
* sometimes, we want to visit those elements in the stack simply, instead of
* pop them from stack.
*/
bool reset_v( void); //reset view point
bool pop_v( ELEM &item); //view stack private:
/*
* the bottom of stack
*/
ELEM *base;
/*
* the top of stack.
*/
INDEX top;
/*
* the current position for pop
*/
INDEX cur;
/*
* the current postion for visit stack
*/
INDEX v_cur;
}; #define STACK_MAX 1000 /**
* This is just a simply stack, and even don't consider dynamic extension.
*/
template <class ELEM>
STACK<ELEM>::STACK(int capacity)
{
if( ( capacity<=0)
||( capacity>STACK_MAX))
{
this->base = NULL;
return ;
}
this->base = NULL;
this->base = new ELEM[capacity];
this->top = capacity -1;
this->cur = -1;
this->v_cur = -1;
} template <class ELEM>
STACK<ELEM>::~STACK( void)
{
if( NULL!=this->base)
{
delete [](this->base);
this->base = NULL;
}
} template <class ELEM>
bool STACK<ELEM>::push( ELEM item)
{
if( (NULL==this->base)
||(this->top==this->cur))
return false; this->cur ++;
this->base[this->cur] = item;
return true;
} template <class ELEM>
bool STACK<ELEM>::pop( ELEM &item)
{
if( (NULL==this->base)
||(this->cur<0))
return false; item = this->base[this->cur];
this->cur--; return true;
} /**
* This function is used to visit stack.
*/
template <class ELEM>
bool STACK<ELEM>::pop_v( ELEM &item)
{
if( (NULL==this->base)
||(this->v_cur<0))
return false; item = this->base[this->v_cur];
this->v_cur--; return true;
} /**
* reset the posion of visit at current postion of stack.
* That is necessary before use pop_v().
*/
template <class ELEM>
bool STACK<ELEM>::reset_v( void)
{
this->v_cur = this->cur;
return true;
} #endif
2.2 Tool--map.h
/**
* Obviously, a map is necessary. By the help of the map, the boy could concentrate on hisself's work rather than be busy with some things about map. That make the code is more clear and simple.
*/
/**
* Map is a 2D matrix. For a element in the matrix, it compose by three parts:
* X coordinate, Y coordinate and additional data in which we could save some
* attribute information about this node.
*/
#ifndef MAP_H
#define MAP_H #define MAP_MAX 15 typedef int COORDINATE; template <class NODE>
class MAP{
public:
MAP( int width);
~MAP( void);
/*
* get a node which reside in [x,y]. The information of node
* will be write into @nod.
*/
bool cur( COORDINATE x, COORDINATE y , NODE &nod);
/*
* get a node reside in [ x-1, y].
*/
bool left( COORDINATE x, COORDINATE y , NODE &nod);
bool right( COORDINATE x, COORDINATE y, NODE &nod);
bool up( COORDINATE x, COORDINATE y, NODE &nod);
bool down( COORDINATE x, COORDINATE y, NODE &nod);
/*
* set a map node
*/
bool set( COORDINATE x, COORDINATE y, NODE &nod); private:
/*
* point to the map
*/
NODE **p;
int wid;
}; /**
* Init the size of map. Because we don't know any thing about the size,
* nither width, nor height. So we use a trick.
*/
template <class NODE>
MAP<NODE>::MAP( int width)
{
if( width>MAP_MAX)
{
this->p = NULL;
return;
}
this->p = NULL;
#if 0
this->p = ( NODE **)malloc( sizeof(NODE)*width*width);
#else
this->p = new NODE*[width];
for( int i=0; i<width; i++)
this->p[i] = new NODE[width];
#endif
this->wid = width;
} template <class NODE>
MAP<NODE>::~MAP( void)
{
if( NULL!=this->p)
{
#if 0
free (this->p);
#else
for( int i=0; i<this->wid; i++)
delete []this->p[i];
delete []this->p;
#endif
this->p = NULL;
this->wid = 0;
}
} template <class NODE>
bool MAP<NODE>::cur(COORDINATE x, COORDINATE y, NODE &nod)
{
if( (x<0||x>=this->wid)
||(y<0||y>=this->wid))
return false; nod = this->p[x][y];
return true;
} template <class NODE >
bool MAP<NODE >::left( COORDINATE x, COORDINATE y, NODE &nod)
{
if( (x<0||x>=this->wid)
||(y<=0||y>=this->wid))
return false; nod = this->p[ x][y-1];
return true;
} template <class NODE>
bool MAP<NODE>::right( COORDINATE x, COORDINATE y, NODE &nod)
{
if( (x<0||x>=this->wid)
||(y<0||y>=this->wid-1))
return false; nod = this->p[x][y+1];
return true;
} template <class NODE>
bool MAP<NODE>::up( COORDINATE x, COORDINATE y, NODE &nod)
{
if( (x<=0||x>=this->wid)
||(y<0||y>=this->wid))
return false; nod = this->p[x-1][y];
return true;
} template <class NODE>
bool MAP<NODE>::down( COORDINATE x, COORDINATE y, NODE &nod)
{
if( (x<0||x>=this->wid-1)
||(y<0||y>=this->wid))
return false; nod = this->p[x+1][y];
return true;
} template <class NODE>
bool MAP<NODE>::set( COORDINATE x, COORDINATE y, NODE &nod)
{
if( (x<0||x>=this->wid)
||(y<0||y>=this->wid))
return false; if( NULL==this->p)
{
return false;
} this->p[x][y] = nod;
return true;
} #endif
2.3 Operator--boy
#include <stdio.h>
#include <iostream> /**
* To traverse the network totally, the little boy must ensure he can go back the same way.
* So he save all of nodes,which he has been arrived,into a stack. The feature of stack is
* first in, first out. That's what we lack.
*/
#include "../stack.h" /**
* Obviously, a map is necessary. By the help of the map, the boy could
* concentrate on hisself's work rather than be busy with some things about map.
* That make the code is more clear and simple.
*/
#include "map.h" //map node
typedef unsigned char UINT8; #define MAP_WID 10
#define END_X (MAP_WID-2) //8
#define END_Y (MAP_WID-2) //8 #define STACK_DEPTH 200 enum ORIEN{
O_RIGHT,
O_DOWN,
O_LEFT,
O_UP,
O_INVIALID,
O_MAX,
}; enum TERRAIN {
T_NOR = 0,
T_BLOCK = 1,
T_INVALID = 2,
}; /**
* map information, 1 meaning for T_BLOCK. 0 meaning for T_NOR.
*/
static int map_v[MAP_WID][MAP_WID] = {
1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 0, 0, 1, 0, 0, 0, 1, 0, 1,
1, 0, 0, 1, 0, 0, 0, 1, 0, 1,
1, 0, 0, 0, 0, 1, 1, 0, 0, 1,
1, 0, 1, 1, 1, 0, 0, 0, 0, 1,
1, 0, 0, 0, 1, 0, 0, 0, 0, 1,
1, 0, 1, 0, 0, 0, 1, 0, 0, 1,
1, 0, 1, 1, 1, 0, 1, 1, 0, 1,
1, 1, 0, 0, 0, 0, 0, 0, 0, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
}; /*
* basic element in map was used to record all information about
* a node.
*/
typedef struct {
COORDINATE x;
COORDINATE y;
TERRAIN val;
ORIEN orien;
bool hasComing;
} ELEMENT; /**
* And this is that poor boy. He will provide a algorithm to solve
* this maze problem. Of course, he need some tools: stack and
* map.
*/
class BOY {
public:
BOY( void);
~BOY( void);
/*
* begin to traverse this maze.
*/
bool work( void);
/*
* show information
*/
bool ShowMap( void);
bool ShowStack( void); private:
/*
* two important functions, they compose the core of this algorithm.
*/
bool forward( void);
bool backward( void);
/*
* work for those function above.
*/
bool hasNBranch( ELEMENT &c_elem, ELEMENT &nod, ORIEN &from); //has a new branch
bool isEnd( void); //arrive the end
bool findVisible( ELEMENT &c_elem, ELEMENT &nod, ORIEN& from);
bool wasCome( ELEMENT &c_elem); /*
* tool 1
*/
MAP<ELEMENT> map;
/*
* tool 2
*/
STACK<ELEMENT> stack;
/*
* current position
*/
ELEMENT cur;
}; BOY::BOY(void):map(MAP_WID), stack(STACK_DEPTH)
{
cur.x = 1;
cur.y = 1;
cur.val = T_NOR;
cur.orien = O_INVIALID; ELEMENT tmp_elem;
COORDINATE i,j;
for( i=0; i<MAP_WID; i++)
for( j=0; j<MAP_WID; j++)
{
tmp_elem.x = i;
tmp_elem.y = j;
tmp_elem.orien = O_INVIALID;
tmp_elem.hasComing = false;
tmp_elem.val = ( TERRAIN)map_v[i][j];
this->map.set( tmp_elem.x, tmp_elem.y, tmp_elem);
}
} BOY::~BOY( void)
{} bool BOY::work(void)
{
bool isContinue = true;
while( isContinue)
{
printf("this->cur[ %d, %d]\n", this->cur.x, this->cur.y);
/*
* go ahead until encounter a dead end or arrive the exit.
*/
while( this->forward( ))
{
printf("this->cur[ %d, %d]\n", this->cur.x, this->cur.y);
if( this->isEnd( ) )
return true;
}
/*
* when the boy has encounter a dead end, he need to backtrack.
* find a valid path.
*/
printf("back>\n");
isContinue=this->backward( );
} return false;
} /**
* based on current position, try to forward a step. If success, the previous postion
* will be push in the stack. and update the information of past node as arrived.
* if fail, that meaning current node is a dead end.
*/
bool BOY::forward(void)
{
ELEMENT tmp_elem;
ORIEN tmp_from = O_RIGHT; if( !this->hasNBranch( this->cur, tmp_elem, tmp_from))
{
return false;
}
this->cur.orien = tmp_from;
this->stack.push( this->cur); this->cur = tmp_elem;
this->cur.hasComing = true;
this->map.set( this->cur.x, this->cur.y, this->cur); return true;
} /**
* one of the core function. when the boy arrived a dead end,
* this function will be call . It go back the same way untill find
* a valid node that could give the little boy a new path(or a branch).
*/
bool BOY::backward(void)
{
ELEMENT tmp_elem;
ORIEN tmp_from = O_RIGHT;
while( this->stack.pop( tmp_elem))
{
this->cur = tmp_elem;
if( this->hasNBranch( this->cur, tmp_elem, tmp_from))
{
return true;
}
} return false;
} /**
* check whether @c_elem node has a valid path that deserve to visit.
* as same as other function, all information will be write into @elem
* and @from.
*/
bool BOY::hasNBranch( ELEMENT &c_elem, ELEMENT &elem, ORIEN &from)
{
ELEMENT tmp_elem;
ORIEN tmp_from = from;
while(1)
{
//find next visible position.
//Y:continue
//N:this node is a ending
if( !this->findVisible( c_elem, tmp_elem, tmp_from))
{
return false;
}
//was coming? //Y:coninue
//N:right way
if( !this->wasCome( tmp_elem))
{//this is a new branch
break;
}
tmp_from =(ORIEN)( tmp_from + 1); //next orientation
} elem = tmp_elem;
from = tmp_from;
return true;
} /**
* arrive the exit of maze ? */
bool BOY::isEnd(void)
{
if( (this->cur.x==END_X)
&&(this->cur.y ==END_Y))
{
return true;
} return false;
} /**
* find a visible path that is not block. It use @c_elem as the current view point,
* if success , write information into @elem and @from.
*/
bool BOY::findVisible( ELEMENT &c_elem, ELEMENT &elem, ORIEN& from)
{
ELEMENT tmp;
/*
* check valid path clockwise.
*/
switch( from)
{
case O_RIGHT:
if( (this->map.right( c_elem.x, c_elem.y, tmp))
&&( tmp.val == T_NOR))
{
elem = tmp;
from = O_RIGHT;
return true;
}
case O_DOWN:
if( (this->map.down( c_elem.x, c_elem.y, tmp))
&&( tmp.val == T_NOR))
{
elem = tmp;
from = O_DOWN;
return true;
}
case O_LEFT:
if( (this->map.left( c_elem.x, c_elem.y, tmp))
&&( tmp.val == T_NOR))
{
elem = tmp;
from = O_LEFT;
return true;
}
case O_UP:
if( (this->map.up( c_elem.x, c_elem.y, tmp))
&&( tmp.val == T_NOR))
{
elem = tmp;
from = O_UP;
return true;
}
default :;
} return false;
} /**
* Though this function is very tiny, it hold a important position
* in the totally algorithm. The upper function will call this to ensure
* whether a node is deserve to visit. By add a series of strategies
* we could improve the algorithm.
*/
bool BOY::wasCome( ELEMENT &c_elem)
{
#if 1
//label
return c_elem.hasComing;
#else
//标准1
if( c_elem.hasComing)
return true; //标准2
ELEMENT elem;
this->stack.reset_v();
while( this->stack.pop_v( elem))
{
if( (c_elem.x==elem.x)
&&(c_elem.y==elem.y))
return true;
} return false; //wasn't coming #endif
} /**
* show the status of map
*/
bool BOY::ShowMap(void)
{
printf("-----------MAP---------------------\n");
COORDINATE i,j;
for( i=0; i<MAP_WID; i++)
{
for( j=0; j<MAP_WID; j++)
{
ELEMENT tmp;
if(!this->map.cur( i, j, tmp))
{
printf("error: [ %d, %d]\n", i, j);
return false;
}
printf("%3d", tmp.val);
}
printf("\n");
} return true;
} /**
* show the status of stack, just visit it and don't pop element from it
*/
bool BOY::ShowStack(void)
{
printf("-----------STACK---------------------\n"); ELEMENT tmp_elem; this->stack.reset_v( );
while( this->stack.pop_v( tmp_elem))
{
printf("[ %d, %d]\n", tmp_elem.x, tmp_elem.y);
}
} int main()
{
BOY boy;
boy.ShowMap( );
boy.work( );
boy.ShowStack( );
return 0;
}
迷宫问题的C语言求解的更多相关文章
- 应用栈解决迷宫问题的C语言实现
题目来自于严蔚敏<数据结构>,参考伪代码实现的程序: #include <stdio.h> #include <malloc.h> //记录通道块在迷宫矩阵当中的横 ...
- Leetcode 20题 有效的括号(Valid Parentheses) Java语言求解
题目描述: 给定一个只包括 '(',')','{','}','[',']' 的字符串,判断字符串是否有效. 有效字符串需满足: 左括号必须用相同类型的右括号闭合. 左括号必须以正确的顺序闭合. 注意空 ...
- s=1+2*3+4*5*6+7*8*9*10+.... C语言求解
#include <stdio.h> /*类似斐波那契数列的计算方式 项 1 2 3 4 1 2*3 4*5*6 7*8*9*10 生成项的起始数字 1 2 4 7 和后一项的差值 1 2 ...
- Leetcode 239题 滑动窗口最大值(Sliding Window Maximum) Java语言求解
题目链接 https://leetcode-cn.com/problems/sliding-window-maximum/ 题目内容 给定一个数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧 ...
- Leetcode 703题数据流中的第K大元素(Kth Largest Element in a Stream)Java语言求解
题目链接 https://leetcode-cn.com/problems/kth-largest-element-in-a-stream/ 题目内容 设计一个找到数据流中第K大元素的类(class) ...
- LeetCode 225题用队列实现栈(Implement Stack using Queues) Java语言求解
链接 https://leetcode-cn.com/problems/implement-stack-using-queues/ 思路 首先演示push()操作:将元素依次进入队1,进入时用top元 ...
- LeetCode 232题用栈实现队列(Implement Queue using Stacks) Java语言求解
题目链接 https://leetcode-cn.com/problems/implement-queue-using-stacks/ 题目描述 使用栈实现队列的下列操作: push(x) -- 将一 ...
- Leetcode 206题 反转链表(Reverse Linked List)Java语言求解
题目描述: 反转一个单链表. 示例: 输入: 1->2->3->4->5->NULL 输出: 5->4->3->2->1->NULL 迭代解 ...
- Leetcode 142题 环形链表 II(Linked List Cycle II) Java语言求解
题目描述: 给定一个链表,返回链表开始入环的第一个节点. 如果链表无环,则返回 null. 为了表示给定链表中的环,我们使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始). 如果 p ...
随机推荐
- 【LOJ】#2115. 「HNOI2015」落忆枫音
题解 如果不加这条边,那么答案是所有点入度的乘积 加上了这条边之后,我们转而统计不合法的方案数 就是相当于统计一条路径从y到x,新图所有点度的乘积除上这条路径所有点的点度乘积 初始化为\(f[y] = ...
- redis 相关知识点
(1)什么是redis? Redis 是一个基于内存的高性能key-value数据库. (有空再补充,有理解错误或不足欢迎指正) (2)Reids的特点 Redis本质上是一个Key-Value类型的 ...
- MVC+easyui,写个树
前言:网上关于编写组织机构树的教程并不少,我第一次写树的时候也是在网上借鉴别人的技术,走了一些弯路写下了树.是因为这些教程都不是很全面,对于编程新手来说跳跃性太强.所以趁着闲暇时期,我用心的写个树,供 ...
- python基础下的数据结构与算法之顺序表
一.什么是顺序表: 线性表的两种基本的实现模型: 1.将表中元素顺序地存放在一大块连续的存储区里,这样实现的表称为顺序表(或连续表).在这种实现中,元素间的顺序关系由它们的存储顺序自然表示. 2.将表 ...
- 使用Golang开发一个本地代理
引言 最近需要对接一个接口,人家提供了两种调用方式,第一种是基于IE浏览器的Active,第二种是动态链接库dll.我们公司的产品不支持IE,所以只能通过调用dll来完成了. 之前我已经用Java实现 ...
- JedisConnectionException: java.net.ConnectException: Connection refused
出现问题 我遇到的一个问题,在连接redis的时候出现了错误!错误如下: JedisConnectionException: java.net.ConnectException: Connection ...
- InnoDB的锁机制浅析(All in One)
目录 InnoDB的锁机制浅析 1. 前言 2. 锁基本概念 2.1 共享锁和排它锁 2.2 意向锁-Intention Locks 2.3 锁的兼容性 3. InnoDB中的锁 3.1 准备工作 3 ...
- 【BZOJ 3027】 3027: [Ceoi2004]Sweet (容斥原理+组合计数)
3027: [Ceoi2004]Sweet Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 71 Solved: 34 Description John ...
- android studio svn 创建分支
创建分支或标签 从哪里复制 工作副本 用这个变体去创建分支,并带着当地的改变.通常,服务项将被 添加带历史 , 不仅仅只有目标目录. 每个不同于根的版本文件 ,将被指定的复制.它推荐 去更新 工作副本 ...
- Redis 复制原理及分析
1.测试 见master-slave测试帖 2 原理 第一次.Slave向Master同步的实现是: Slave向Master发出同步请求(发送sync命令),Master先dump出rdb文件,然后 ...