1 .Preface

/**

* There have been many data to introduce the algorithm. So I will try to simply explain it and explain the program in detail.

*/

/**

* Prerequisites:

*  1). a survival skill in CPP programing language.

*  2). a curious mind for maze problem.

*

*/

//Image this, you have maze, just as following:

/*

*

*     1  1  1  1  1  1  1  1  1  1

*-> 1  0  0  1  0  0  0  1  0  1

*     1  0  0  1  0  0  0  1  0  1

*     1  0  0  0  0  1  1  0  0  1

*     1  0  1  1  1  0  0  0  0  1

*     1  0  0  0  1  0  0  0  0  1

*     1  0  1  0  0  0  1  0  0  1

*     1  0  1  1  1  0  1  1  0  1

*     1  1  0  0  0  0  0  0  0  1  -->exit

*     1  1  1  1  1  1  1  1  1  1 

*/

//the entrance is [1,1], and exit is [8,8].

//How could you find a valid way to get through this?

/*

* when  start with [1, 1] , we will arrive some special position, which provide us many paths .For example, if we reside in [1, 1], there have two paths for us, [ 2, 1] and [ 1, 2]. Those speical nodes connect each other and compose a complexity topology network.



*

* To solve this problem, we could do as following:

*  step 1: just go ahead as one pleases , but record all nodes which has arrived.

*  step 2: if arrive a dead end, that mean you was choose a wrong path. So you need to go back the same way, find the last node which you did a choice, and  step into another choice.

*  step 3: Then repeat step 1 untill arrive the exit.

*

*/

2.Source code

/**

* Now, check this source code. I divided this problem with three parts: a stack, a map, and a boy who provide solve solution. First, let us put that poor little boy into this maze.( brutally )

*/

2. 1 Tool--stack.h

/**

* To traverse the network totally, the little boy must ensure he can go back the same way. So he save all of nodes,which he has been arrived,into a stack. The feature of stack is

* first in, first out. That's what we lack.

*/

/**
* For make this stack more useful, a class template is created.
*/
#ifndef STACK_H
#define STACK_H typedef int INDEX; template < class ELEM>
class STACK{
public:
STACK( int capacity); //capacity
~STACK( void);
/*
* some basic operation function.
*/
bool pop( ELEM &item);
bool push( ELEM item);
/*
* sometimes, we want to visit those elements in the stack simply, instead of
* pop them from stack.
*/
bool reset_v( void); //reset view point
bool pop_v( ELEM &item); //view stack private:
/*
* the bottom of stack
*/
ELEM *base;
/*
* the top of stack.
*/
INDEX top;
/*
* the current position for pop
*/
INDEX cur;
/*
* the current postion for visit stack
*/
INDEX v_cur;
}; #define STACK_MAX 1000 /**
* This is just a simply stack, and even don't consider dynamic extension.
*/
template <class ELEM>
STACK<ELEM>::STACK(int capacity)
{
if( ( capacity<=0)
||( capacity>STACK_MAX))
{
this->base = NULL;
return ;
}
this->base = NULL;
this->base = new ELEM[capacity];
this->top = capacity -1;
this->cur = -1;
this->v_cur = -1;
} template <class ELEM>
STACK<ELEM>::~STACK( void)
{
if( NULL!=this->base)
{
delete [](this->base);
this->base = NULL;
}
} template <class ELEM>
bool STACK<ELEM>::push( ELEM item)
{
if( (NULL==this->base)
||(this->top==this->cur))
return false; this->cur ++;
this->base[this->cur] = item;
return true;
} template <class ELEM>
bool STACK<ELEM>::pop( ELEM &item)
{
if( (NULL==this->base)
||(this->cur<0))
return false; item = this->base[this->cur];
this->cur--; return true;
} /**
* This function is used to visit stack.
*/
template <class ELEM>
bool STACK<ELEM>::pop_v( ELEM &item)
{
if( (NULL==this->base)
||(this->v_cur<0))
return false; item = this->base[this->v_cur];
this->v_cur--; return true;
} /**
* reset the posion of visit at current postion of stack.
* That is necessary before use pop_v().
*/
template <class ELEM>
bool STACK<ELEM>::reset_v( void)
{
this->v_cur = this->cur;
return true;
} #endif

2.2 Tool--map.h

/**

* Obviously, a map is necessary. By the help of the map, the boy could  concentrate on hisself's work rather than be busy with some things about map. That make the code is more clear and simple.

*/

/**
* Map is a 2D matrix. For a element in the matrix, it compose by three parts:
* X coordinate, Y coordinate and additional data in which we could save some
* attribute information about this node.
*/
#ifndef MAP_H
#define MAP_H #define MAP_MAX 15 typedef int COORDINATE; template <class NODE>
class MAP{
public:
MAP( int width);
~MAP( void);
/*
* get a node which reside in [x,y]. The information of node
* will be write into @nod.
*/
bool cur( COORDINATE x, COORDINATE y , NODE &nod);
/*
* get a node reside in [ x-1, y].
*/
bool left( COORDINATE x, COORDINATE y , NODE &nod);
bool right( COORDINATE x, COORDINATE y, NODE &nod);
bool up( COORDINATE x, COORDINATE y, NODE &nod);
bool down( COORDINATE x, COORDINATE y, NODE &nod);
/*
* set a map node
*/
bool set( COORDINATE x, COORDINATE y, NODE &nod); private:
/*
* point to the map
*/
NODE **p;
int wid;
}; /**
* Init the size of map. Because we don't know any thing about the size,
* nither width, nor height. So we use a trick.
*/
template <class NODE>
MAP<NODE>::MAP( int width)
{
if( width>MAP_MAX)
{
this->p = NULL;
return;
}
this->p = NULL;
#if 0
this->p = ( NODE **)malloc( sizeof(NODE)*width*width);
#else
this->p = new NODE*[width];
for( int i=0; i<width; i++)
this->p[i] = new NODE[width];
#endif
this->wid = width;
} template <class NODE>
MAP<NODE>::~MAP( void)
{
if( NULL!=this->p)
{
#if 0
free (this->p);
#else
for( int i=0; i<this->wid; i++)
delete []this->p[i];
delete []this->p;
#endif
this->p = NULL;
this->wid = 0;
}
} template <class NODE>
bool MAP<NODE>::cur(COORDINATE x, COORDINATE y, NODE &nod)
{
if( (x<0||x>=this->wid)
||(y<0||y>=this->wid))
return false; nod = this->p[x][y];
return true;
} template <class NODE >
bool MAP<NODE >::left( COORDINATE x, COORDINATE y, NODE &nod)
{
if( (x<0||x>=this->wid)
||(y<=0||y>=this->wid))
return false; nod = this->p[ x][y-1];
return true;
} template <class NODE>
bool MAP<NODE>::right( COORDINATE x, COORDINATE y, NODE &nod)
{
if( (x<0||x>=this->wid)
||(y<0||y>=this->wid-1))
return false; nod = this->p[x][y+1];
return true;
} template <class NODE>
bool MAP<NODE>::up( COORDINATE x, COORDINATE y, NODE &nod)
{
if( (x<=0||x>=this->wid)
||(y<0||y>=this->wid))
return false; nod = this->p[x-1][y];
return true;
} template <class NODE>
bool MAP<NODE>::down( COORDINATE x, COORDINATE y, NODE &nod)
{
if( (x<0||x>=this->wid-1)
||(y<0||y>=this->wid))
return false; nod = this->p[x+1][y];
return true;
} template <class NODE>
bool MAP<NODE>::set( COORDINATE x, COORDINATE y, NODE &nod)
{
if( (x<0||x>=this->wid)
||(y<0||y>=this->wid))
return false; if( NULL==this->p)
{
return false;
} this->p[x][y] = nod;
return true;
} #endif

2.3 Operator--boy

#include <stdio.h>
#include <iostream> /**
* To traverse the network totally, the little boy must ensure he can go back the same way.
* So he save all of nodes,which he has been arrived,into a stack. The feature of stack is
* first in, first out. That's what we lack.
*/
#include "../stack.h" /**
* Obviously, a map is necessary. By the help of the map, the boy could
* concentrate on hisself's work rather than be busy with some things about map.
* That make the code is more clear and simple.
*/
#include "map.h" //map node
typedef unsigned char UINT8; #define MAP_WID 10
#define END_X (MAP_WID-2) //8
#define END_Y (MAP_WID-2) //8 #define STACK_DEPTH 200 enum ORIEN{
O_RIGHT,
O_DOWN,
O_LEFT,
O_UP,
O_INVIALID,
O_MAX,
}; enum TERRAIN {
T_NOR = 0,
T_BLOCK = 1,
T_INVALID = 2,
}; /**
* map information, 1 meaning for T_BLOCK. 0 meaning for T_NOR.
*/
static int map_v[MAP_WID][MAP_WID] = {
1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 0, 0, 1, 0, 0, 0, 1, 0, 1,
1, 0, 0, 1, 0, 0, 0, 1, 0, 1,
1, 0, 0, 0, 0, 1, 1, 0, 0, 1,
1, 0, 1, 1, 1, 0, 0, 0, 0, 1,
1, 0, 0, 0, 1, 0, 0, 0, 0, 1,
1, 0, 1, 0, 0, 0, 1, 0, 0, 1,
1, 0, 1, 1, 1, 0, 1, 1, 0, 1,
1, 1, 0, 0, 0, 0, 0, 0, 0, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
}; /*
* basic element in map was used to record all information about
* a node.
*/
typedef struct {
COORDINATE x;
COORDINATE y;
TERRAIN val;
ORIEN orien;
bool hasComing;
} ELEMENT; /**
* And this is that poor boy. He will provide a algorithm to solve
* this maze problem. Of course, he need some tools: stack and
* map.
*/
class BOY {
public:
BOY( void);
~BOY( void);
/*
* begin to traverse this maze.
*/
bool work( void);
/*
* show information
*/
bool ShowMap( void);
bool ShowStack( void); private:
/*
* two important functions, they compose the core of this algorithm.
*/
bool forward( void);
bool backward( void);
/*
* work for those function above.
*/
bool hasNBranch( ELEMENT &c_elem, ELEMENT &nod, ORIEN &from); //has a new branch
bool isEnd( void); //arrive the end
bool findVisible( ELEMENT &c_elem, ELEMENT &nod, ORIEN& from);
bool wasCome( ELEMENT &c_elem); /*
* tool 1
*/
MAP<ELEMENT> map;
/*
* tool 2
*/
STACK<ELEMENT> stack;
/*
* current position
*/
ELEMENT cur;
}; BOY::BOY(void):map(MAP_WID), stack(STACK_DEPTH)
{
cur.x = 1;
cur.y = 1;
cur.val = T_NOR;
cur.orien = O_INVIALID; ELEMENT tmp_elem;
COORDINATE i,j;
for( i=0; i<MAP_WID; i++)
for( j=0; j<MAP_WID; j++)
{
tmp_elem.x = i;
tmp_elem.y = j;
tmp_elem.orien = O_INVIALID;
tmp_elem.hasComing = false;
tmp_elem.val = ( TERRAIN)map_v[i][j];
this->map.set( tmp_elem.x, tmp_elem.y, tmp_elem);
}
} BOY::~BOY( void)
{} bool BOY::work(void)
{
bool isContinue = true;
while( isContinue)
{
printf("this->cur[ %d, %d]\n", this->cur.x, this->cur.y);
/*
* go ahead until encounter a dead end or arrive the exit.
*/
while( this->forward( ))
{
printf("this->cur[ %d, %d]\n", this->cur.x, this->cur.y);
if( this->isEnd( ) )
return true;
}
/*
* when the boy has encounter a dead end, he need to backtrack.
* find a valid path.
*/
printf("back>\n");
isContinue=this->backward( );
} return false;
} /**
* based on current position, try to forward a step. If success, the previous postion
* will be push in the stack. and update the information of past node as arrived.
* if fail, that meaning current node is a dead end.
*/
bool BOY::forward(void)
{
ELEMENT tmp_elem;
ORIEN tmp_from = O_RIGHT; if( !this->hasNBranch( this->cur, tmp_elem, tmp_from))
{
return false;
}
this->cur.orien = tmp_from;
this->stack.push( this->cur); this->cur = tmp_elem;
this->cur.hasComing = true;
this->map.set( this->cur.x, this->cur.y, this->cur); return true;
} /**
* one of the core function. when the boy arrived a dead end,
* this function will be call . It go back the same way untill find
* a valid node that could give the little boy a new path(or a branch).
*/
bool BOY::backward(void)
{
ELEMENT tmp_elem;
ORIEN tmp_from = O_RIGHT;
while( this->stack.pop( tmp_elem))
{
this->cur = tmp_elem;
if( this->hasNBranch( this->cur, tmp_elem, tmp_from))
{
return true;
}
} return false;
} /**
* check whether @c_elem node has a valid path that deserve to visit.
* as same as other function, all information will be write into @elem
* and @from.
*/
bool BOY::hasNBranch( ELEMENT &c_elem, ELEMENT &elem, ORIEN &from)
{
ELEMENT tmp_elem;
ORIEN tmp_from = from;
while(1)
{
//find next visible position.
//Y:continue
//N:this node is a ending
if( !this->findVisible( c_elem, tmp_elem, tmp_from))
{
return false;
}
//was coming? //Y:coninue
//N:right way
if( !this->wasCome( tmp_elem))
{//this is a new branch
break;
}
tmp_from =(ORIEN)( tmp_from + 1); //next orientation
} elem = tmp_elem;
from = tmp_from;
return true;
} /**
* arrive the exit of maze ? */
bool BOY::isEnd(void)
{
if( (this->cur.x==END_X)
&&(this->cur.y ==END_Y))
{
return true;
} return false;
} /**
* find a visible path that is not block. It use @c_elem as the current view point,
* if success , write information into @elem and @from.
*/
bool BOY::findVisible( ELEMENT &c_elem, ELEMENT &elem, ORIEN& from)
{
ELEMENT tmp;
/*
* check valid path clockwise.
*/
switch( from)
{
case O_RIGHT:
if( (this->map.right( c_elem.x, c_elem.y, tmp))
&&( tmp.val == T_NOR))
{
elem = tmp;
from = O_RIGHT;
return true;
}
case O_DOWN:
if( (this->map.down( c_elem.x, c_elem.y, tmp))
&&( tmp.val == T_NOR))
{
elem = tmp;
from = O_DOWN;
return true;
}
case O_LEFT:
if( (this->map.left( c_elem.x, c_elem.y, tmp))
&&( tmp.val == T_NOR))
{
elem = tmp;
from = O_LEFT;
return true;
}
case O_UP:
if( (this->map.up( c_elem.x, c_elem.y, tmp))
&&( tmp.val == T_NOR))
{
elem = tmp;
from = O_UP;
return true;
}
default :;
} return false;
} /**
* Though this function is very tiny, it hold a important position
* in the totally algorithm. The upper function will call this to ensure
* whether a node is deserve to visit. By add a series of strategies
* we could improve the algorithm.
*/
bool BOY::wasCome( ELEMENT &c_elem)
{
#if 1
//label
return c_elem.hasComing;
#else
//标准1
if( c_elem.hasComing)
return true; //标准2
ELEMENT elem;
this->stack.reset_v();
while( this->stack.pop_v( elem))
{
if( (c_elem.x==elem.x)
&&(c_elem.y==elem.y))
return true;
} return false; //wasn't coming #endif
} /**
* show the status of map
*/
bool BOY::ShowMap(void)
{
printf("-----------MAP---------------------\n");
COORDINATE i,j;
for( i=0; i<MAP_WID; i++)
{
for( j=0; j<MAP_WID; j++)
{
ELEMENT tmp;
if(!this->map.cur( i, j, tmp))
{
printf("error: [ %d, %d]\n", i, j);
return false;
}
printf("%3d", tmp.val);
}
printf("\n");
} return true;
} /**
* show the status of stack, just visit it and don't pop element from it
*/
bool BOY::ShowStack(void)
{
printf("-----------STACK---------------------\n"); ELEMENT tmp_elem; this->stack.reset_v( );
while( this->stack.pop_v( tmp_elem))
{
printf("[ %d, %d]\n", tmp_elem.x, tmp_elem.y);
}
} int main()
{
BOY boy;
boy.ShowMap( );
boy.work( );
boy.ShowStack( );
return 0;
}

迷宫问题的C语言求解的更多相关文章

  1. 应用栈解决迷宫问题的C语言实现

    题目来自于严蔚敏<数据结构>,参考伪代码实现的程序: #include <stdio.h> #include <malloc.h> //记录通道块在迷宫矩阵当中的横 ...

  2. Leetcode 20题 有效的括号(Valid Parentheses) Java语言求解

    题目描述: 给定一个只包括 '(',')','{','}','[',']' 的字符串,判断字符串是否有效. 有效字符串需满足: 左括号必须用相同类型的右括号闭合. 左括号必须以正确的顺序闭合. 注意空 ...

  3. s=1+2*3+4*5*6+7*8*9*10+.... C语言求解

    #include <stdio.h> /*类似斐波那契数列的计算方式 项 1 2 3 4 1 2*3 4*5*6 7*8*9*10 生成项的起始数字 1 2 4 7 和后一项的差值 1 2 ...

  4. Leetcode 239题 滑动窗口最大值(Sliding Window Maximum) Java语言求解

    题目链接 https://leetcode-cn.com/problems/sliding-window-maximum/ 题目内容 给定一个数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧 ...

  5. Leetcode 703题数据流中的第K大元素(Kth Largest Element in a Stream)Java语言求解

    题目链接 https://leetcode-cn.com/problems/kth-largest-element-in-a-stream/ 题目内容 设计一个找到数据流中第K大元素的类(class) ...

  6. LeetCode 225题用队列实现栈(Implement Stack using Queues) Java语言求解

    链接 https://leetcode-cn.com/problems/implement-stack-using-queues/ 思路 首先演示push()操作:将元素依次进入队1,进入时用top元 ...

  7. LeetCode 232题用栈实现队列(Implement Queue using Stacks) Java语言求解

    题目链接 https://leetcode-cn.com/problems/implement-queue-using-stacks/ 题目描述 使用栈实现队列的下列操作: push(x) -- 将一 ...

  8. Leetcode 206题 反转链表(Reverse Linked List)Java语言求解

    题目描述: 反转一个单链表. 示例: 输入: 1->2->3->4->5->NULL 输出: 5->4->3->2->1->NULL 迭代解 ...

  9. Leetcode 142题 环形链表 II(Linked List Cycle II) Java语言求解

    题目描述: 给定一个链表,返回链表开始入环的第一个节点. 如果链表无环,则返回 null. 为了表示给定链表中的环,我们使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始). 如果 p ...

随机推荐

  1. Java编程的逻辑 (15) - 初识继承和多态

    本系列文章经补充和完善,已修订整理成书<Java编程的逻辑>,由机械工业出版社华章分社出版,于2018年1月上市热销,读者好评如潮!各大网店和书店有售,欢迎购买,京东自营链接:http:/ ...

  2. Cname与A记录(Address)区别

    Cname与A记录(Address)区别A记录是解析域名到IP,Cname是解析域名到另外一个域名. 一台服务器可以布置多个网站,也可以有多个域名,如如域名A----->A记录-----> ...

  3. CSS------如何让大小不一样的div顶部对齐

    方法一:(推荐) <div style="float:left;margin-right:20px"> <img src="/source/s_1701 ...

  4. 学习ABP遇到的问题汇总

    1,在abp官网下载的模板(asp.net+ef)写Application层的时候需要使用AutoMapper.结果ObjectMapper一直为null 解决:需要在当前项目的Module依赖Abp ...

  5. flask 中的request

    request.args                    从URL地址中的参数request.form                   POST请求时 从FormData中获取参数reque ...

  6. php版本CKFinder3.4.4自定义上传文件位置

    1.修改文件上传路径: 编辑ckfinder目录下config.php,70行设置为:    'baseUrl'      => '/uploads/'.date('Ymd').'/'; 这样上 ...

  7. 图的遍历 之 深搜dfs

    DFS 遍历 深度优先搜索是一个递归过程,有回退过程. 对一个无向连通图,在访问图中某一起始顶点u 后,由u 出发,访问它的某一邻接顶点v1:再从v1 出发,访问与v1 邻接但还没有访问过的顶点v2: ...

  8. BZOJ.2660.[BJOI2012]最多的方案(DP)

    题目链接 首先我们知道: 也很好理解.如果相邻两项出现在斐波那契表示法中,那它们显然可以合并. 所以我们能得到\(n\)的斐波那契表示,记\(pos[i]\)为\(n\)的斐波那契表示法中,第\(i\ ...

  9. Codeforces.314E.Sereja and Squares(DP)

    题目链接 http://www.cnblogs.com/TheRoadToTheGold/p/8443668.html \(Description\) 给你一个擦去了部分左括号和全部右括号的括号序列, ...

  10. Intel Code Challenge Final Round (Div. 1 + Div. 2, Combined) A. Checking the Calendar 水题

    A. Checking the Calendar 题目连接: http://codeforces.com/contest/724/problem/A Description You are given ...