1、批量写

public static void batchWriteRow(SyncClient client) {
    BatchWriteRowRequest request = new BatchWriteRowRequest();

    //RowPut
    PrimaryKeyBuilder primaryKeyBuilder = PrimaryKeyBuilder.createPrimaryKeyBuilder();
    primaryKeyBuilder.addPrimaryKeyColumn("noteid", PrimaryKeyValue.fromLong(99));
    RowPutChange rowPutChange = new RowPutChange("note",primaryKeyBuilder.build());
    //添加一些列
    rowPutChange.addColumn(new Column("intattr", ColumnValue.fromLong(123)));
    rowPutChange.addColumn(new Column("strattr", ColumnValue.fromString("string 1"), System.currentTimeMillis()));
    rowPutChange.addColumn(new Column("strattr", ColumnValue.fromString("string 23345"),System.currentTimeMillis() + 10));
    request.addRowChange(rowPutChange);

    //RowDelete
    PrimaryKeyBuilder primaryKeyBuilder2 = PrimaryKeyBuilder.createPrimaryKeyBuilder();
    primaryKeyBuilder2.addPrimaryKeyColumn("noteid", PrimaryKeyValue.fromLong(2));
    RowDeleteChange rowDeleteChange = new RowDeleteChange("note",primaryKeyBuilder2.build());
    request.addRowChange(rowDeleteChange);

    //RowUpdate
    PrimaryKeyBuilder primaryKeyBuilder3 = PrimaryKeyBuilder.createPrimaryKeyBuilder();
    primaryKeyBuilder3.addPrimaryKeyColumn("noteid",PrimaryKeyValue.fromLong(1));
    RowUpdateChange rowUpdateChange = new RowUpdateChange("note", primaryKeyBuilder3.build());
    rowUpdateChange.put("day",ColumnValue.fromString("修改后的day"));    rowUpdateChange.deleteColumns("month");
    request.addRowChange(rowUpdateChange);

    //另一个表的RowPut
    PrimaryKeyBuilder keyBuilder = PrimaryKeyBuilder.createPrimaryKeyBuilder();
    keyBuilder.addPrimaryKeyColumn("userid",PrimaryKeyValue.fromLong(20));
    keyBuilder.addPrimaryKeyColumn("userguid",PrimaryKeyValue.fromString("121212323"));
    keyBuilder.addPrimaryKeyColumn("userauto",PrimaryKeyValue.AUTO_INCREMENT);
    RowPutChange rowPutChange2 = new RowPutChange("user", keyBuilder.build());
    request.addRowChange(rowPutChange2);

    BatchWriteRowResponse batchWriteRowResponse = client.batchWriteRow(request);

    System.out.println("是否全部成功:" + batchWriteRowResponse.isAllSucceed());
    if(!batchWriteRowResponse.isAllSucceed()) {
        for(RowResult rowResult : batchWriteRowResponse.getFailedRows()) {
            System.out.println("失败的行:" + request.getRowChange(rowResult.getTableName(),rowResult.getIndex()).getPrimaryKey());
                        System.out.println("失败原因:" + rowResult.getError());
        }
    }

    //可以通过createRequestForRetry方法再构造一个请求对失败的行进行重试.这里只给出构造重试请求的部分.
    //推荐的重试方法是使用SDK的自定义重试策略功能, 支持对batch操作的部分行错误进行重试. 设定重试策略后, 调用接口处即不需要增加重试代码.
    //BatchWriteRowRequest retryRequest = request.createRequestForRetry(batchWriteRowResponse.getFailedRows());
}

2、批量读

private static void batchGetRow(SyncClient client) {
    BatchGetRowRequest batchGetRowRequest = new BatchGetRowRequest();

    MultiRowQueryCriteria multiRowQueryCriteria = new MultiRowQueryCriteria("note");
    // 加入要读的行
    PrimaryKeyBuilder keyBuilder1 = PrimaryKeyBuilder.createPrimaryKeyBuilder();
    keyBuilder1.addPrimaryKeyColumn("noteid", PrimaryKeyValue.fromLong(1));
    PrimaryKey key1 = keyBuilder1.build();

    PrimaryKeyBuilder keyBuilder2 = PrimaryKeyBuilder.createPrimaryKeyBuilder();
    keyBuilder2.addPrimaryKeyColumn("noteid", PrimaryKeyValue.fromLong(99));
    PrimaryKey key2 = keyBuilder2.build();
    multiRowQueryCriteria.addRow(key1);
    multiRowQueryCriteria.addRow(key2);
    // 添加条件
    multiRowQueryCriteria.setMaxVersions(1);
    String[] colsStrings = { "noteid", "day", "year" };
    multiRowQueryCriteria.addColumnsToGet(colsStrings);
    SingleColumnValueFilter singleColumnValueFilter = new SingleColumnValueFilter("year",
            SingleColumnValueFilter.CompareOperator.EQUAL, ColumnValue.fromLong(2019));
    singleColumnValueFilter.setPassIfMissing(false);
    multiRowQueryCriteria.setFilter(singleColumnValueFilter);
    batchGetRowRequest.addMultiRowQueryCriteria(multiRowQueryCriteria);

    MultiRowQueryCriteria multiRowQueryCriteria2 = new MultiRowQueryCriteria("testdb");
    multiRowQueryCriteria2.setMaxVersions(1);
    PrimaryKeyBuilder keyBuilder3 = PrimaryKeyBuilder.createPrimaryKeyBuilder();
    keyBuilder3.addPrimaryKeyColumn("testid", PrimaryKeyValue.fromLong(1));
    PrimaryKey key3 = keyBuilder3.build();
    multiRowQueryCriteria2.addRow(key3);
    batchGetRowRequest.addMultiRowQueryCriteria(multiRowQueryCriteria2);

    BatchGetRowResponse batchGetRowResponse = client.batchGetRow(batchGetRowRequest);

    System.out.println("是否全部成功:" + batchGetRowResponse.isAllSucceed());
    if (!batchGetRowResponse.isAllSucceed()) {
        for (RowResult rowResult : batchGetRowResponse.getFailedRows()) {
            System.out.println(
                    "失败的行:" + batchGetRowRequest.getPrimaryKey(rowResult.getTableName(), rowResult.getIndex()));
            System.out.println("失败原因:" + rowResult.getError());
        }
    }

    List<RowResult> results = batchGetRowResponse.getSucceedRows();
    for (RowResult rowResult : results) {
        Row row = rowResult.getRow();
        if (row != null) {
            Column[] columns = row.getColumns();
            for (Column column : columns) {
                System.out.println("Name:" + column.getName() + " Value:" + column.getValue() + "\n");
            }
        }
    }

    List<RowResult> results1 = batchGetRowResponse.getBatchGetRowResult("note");
    for (RowResult rowResult : results1) {
        Row row = rowResult.getRow();
        if (row != null) {
            Column[] columns = row.getColumns();
            for (Column column : columns) {
                System.out.println("Name:" + column.getName() + " Value:" + column.getValue() + "\n");
            }
        }
    }

    List<RowResult> results2 = batchGetRowResponse.getBatchGetRowResult("testdb");
    for (RowResult rowResult : results2) {
        Row row = rowResult.getRow();        if (row != null) {
            Column[] columns = row.getColumns();
            for (Column column : columns) {
                System.out.println("Name:" + column.getName() + " Value:" + column.getValue() + "\n");
            }
        }
    }

    // 可以通过createRequestForRetry方法再构造一个请求对失败的行进行重试.这里只给出构造重试请求的部分.
    // 推荐的重试方法是使用SDK的自定义重试策略功能, 支持对batch操作的部分行错误进行重试. 设定重试策略后, 调用接口处即不需要增加重试代码.
    // BatchGetRowRequest retryRequest =
    // batchGetRowRequest.createRequestForRetry(batchGetRowResponse.getFailedRows());

}

因为不通过条件的查询都会返回null,务必记得对Row做null检查。

3、范围读

设置起止主键,查找此范围内的数据,当数据量过大无法一次读取完时,会返回下一个主键位置,接着读取。

public static void getRange(SyncClient client) throws IOException {
    RangeRowQueryCriteria rangeRowQueryCriteria = new RangeRowQueryCriteria("note");

    //设置起始主键
    PrimaryKeyBuilder primaryKeyBuilder = PrimaryKeyBuilder.createPrimaryKeyBuilder();
    primaryKeyBuilder.addPrimaryKeyColumn("noteid", PrimaryKeyValue.fromLong(20));
    rangeRowQueryCriteria.setInclusiveStartPrimaryKey(primaryKeyBuilder.build());

    //设置结果主键
    primaryKeyBuilder = PrimaryKeyBuilder.createPrimaryKeyBuilder();
    primaryKeyBuilder.addPrimaryKeyColumn("noteid", PrimaryKeyValue.fromLong(1));
    rangeRowQueryCriteria.setExclusiveEndPrimaryKey(primaryKeyBuilder.build());
    //反序读
    rangeRowQueryCriteria.setDirection(Direction.BACKWARD);

    rangeRowQueryCriteria.setMaxVersions(1);
    while (true) {
        GetRangeResponse getRangeResponse = client.getRange(new GetRangeRequest(rangeRowQueryCriteria));
        for(Row row : getRangeResponse.getRows()) {
            PrimaryKeyColumn[] pks = row.getPrimaryKey().getPrimaryKeyColumns();
            Column pkColumn = pks[0].toColumn();
            System.out.println("noteid:" + pkColumn.getValue());

            Column[] columns = row.getColumns();
            for(Column column : columns) {
                System.out.println(" Name:" + column.getName() + " Value:" + column.getValue());
            }
        }

        if(getRangeResponse.getNextStartPrimaryKey() != null) {
            System.out.println("--------nextStartPrimaryKey不为空,则继续读取---------");
            rangeRowQueryCriteria.setInclusiveStartPrimaryKey(getRangeResponse.getNextStartPrimaryKey());
        }else {
            break;
        }
    }
}

4、迭代读

public static void getRangeByIterator(SyncClient client) throws IOException {
    RangeIteratorParameter rangeIteratorParameter = new RangeIteratorParameter("note");

    //设置起始主键
    PrimaryKeyBuilder primaryKeyBuilder = PrimaryKeyBuilder.createPrimaryKeyBuilder();
    primaryKeyBuilder.addPrimaryKeyColumn("noteid", PrimaryKeyValue.fromLong(20));
    rangeIteratorParameter.setInclusiveStartPrimaryKey(primaryKeyBuilder.build());

    //设置结果主键
    primaryKeyBuilder = PrimaryKeyBuilder.createPrimaryKeyBuilder();
    primaryKeyBuilder.addPrimaryKeyColumn("noteid", PrimaryKeyValue.fromLong(1));
    rangeIteratorParameter.setExclusiveEndPrimaryKey(primaryKeyBuilder.build());

    rangeIteratorParameter.setDirection(Direction.BACKWARD);

    rangeIteratorParameter.setMaxVersions(1);

    Iterator<Row> iterator = client.createRangeIterator(rangeIteratorParameter);
    while (iterator.hasNext()) {
        Row row = iterator.next();

        PrimaryKeyColumn[] pks = row.getPrimaryKey().getPrimaryKeyColumns();
        Column pkColumn = pks[0].toColumn();
        System.out.println("noteid:" + pkColumn.getValue());

        Column[] columns = row.getColumns();
        for(Column column : columns) {
            System.out.println(" Name:" + column.getName() + " Value:" + column.getValue());
        }

    }
}

TableStore:多行数据操作的更多相关文章

  1. MySQL命令行数据操作使用心得(总结版)

    Char 0~255 Varchar 0~65535 text 0~65535(只能保存字符) Longtext 0~4294967295(只能保存字符) CMD登陆mysql mysql -u ro ...

  2. FunDA(2)- Streaming Data Operation:流式数据操作

    在上一集的讨论里我们介绍并实现了强类型返回结果行.使用强类型主要的目的是当我们把后端数据库SQL批次操作搬到内存里转变成数据流式按行操作时能更方便.准确.高效地选定数据字段.在上集讨论示范里我们用集合 ...

  3. hive数据操作

    mdl是数据操作类的语言,包括向数据表加载文件,写查询结果等操作 hive有四种导入数据的方式 >从本地加载数据 LOAD DATA LOCAL INPATH './examples/files ...

  4. Django数据操作F和Q、model多对多操作、Django中间件、信号、读数据库里的数据实现分页

    models.tb.objects.all().using('default'),根据using来指定在哪个库里查询,default是settings中配置的数据库的连接名称. 外话:django中引 ...

  5. SQL不同服务器数据库之间的数据操作整理(完整版)

    ---------------------------------------------------------------------------------- -- Author : htl25 ...

  6. C#利用SqlDataAdapte对DataTable进行批量数据操作

    C#利用SqlDataAdapte对DataTable进行批量数据操作,可以让我们大大简化操作数据的代码量,我们几乎不需要循环和不关心用户到底是新增还是修改,更不用编写新增和修改以及删除的SQL语句, ...

  7. [转]Mysql命令行常用操作

    Mysql命令行常用操作 一.从命令行登录MySQL数据库服务器 1.登录使用默认3306端口的MySQL /usr/local/mysql/bin/mysql -u root -p 2.通过TCP连 ...

  8. oracle-2-sql数据操作和查询

    主要内容: >oracle 数据类型 >sql建表和约束 >sql对数九的增删改 >sql查询 >oracle伪例 1.oracle的数据类型 oracle数据库的核心是 ...

  9. (转)SQLLite数据操作

    原文:http://dreamboy.blog.51cto.com/3180937/722352 SQLLite数据操作 一般数据采用的固定的静态数据类型,而SQLite采用的是动态数据类型,会根据存 ...

随机推荐

  1. react-redux 知识点

    React-Redux 使用 如果只使用redux,那么流程是这样的: component --> dispatch(action) --> reducer --> subscrib ...

  2. python的requests快速上手、高级用法和身份认证

    https://blog.csdn.net/qq_25134989/article/details/78800209 快速上手 迫不及待了吗?本页内容为如何入门 Requests 提供了很好的指引.其 ...

  3. c/c++ 获取数组长度

    在C/C++中并没有提供直接获取数组长度的函数 c/c++ 获取数组长度其中一种方法是使用sizeof(array) / sizeof(array[0]). 在C语言中习惯上在使用时都把它定义成一个宏 ...

  4. Mongo导出mongoexport和导入mongoimport介绍

    最近爬取mobike和ofo单车数据,需要存储在csv文件中,因为设计的程序没有写存储csv文件的方法,为了偷懒所以就继续存储到了MongoDB中.恰好MongoDB支持导出的数据可以是csv文件和j ...

  5. Jmeter -- HTTP Request Defaults HTTP请求默认值

    一.HTTP Request Defaults的作用: 该组件可以为我们的http请求设置默认的值.假如,我们创建一个测试计划有很多个请求且都是发送到相同的server,这时我们只需添加一个Http ...

  6. JavaScript 继承总结

    http://blog.csdn.net/yincheng01/article/details/6841953 Metro C++ http://www.cnblogs.com/michaelxu/a ...

  7. mysql重复start stop slave测试

    如题,测试重复start slave, stop slave是否会有报错. 版本 5.7.21 重复start slave测试 第一次start >start slave; Query OK, ...

  8. 蒲公英 Bug 管理云

    官网访问地址:https://www.tracup.com/ 优势地方: ①免费使用 现在免费,今后也一直免费. ②无需部署 网站采用云端部署,这也就意味着无需开发者自己搭建.部署,注册一个蒲公英账号 ...

  9. 基于nginx + lua实现的反向代理动态更新

    大家都知道,nginx是当前应用非常广泛的web服务器,热度因为他的高并发高性能高可靠性,且轻量级!牛逼的不行,不多说这些. 今天要介绍的是,如何基于nginx和lua脚本,也就是在openresty ...

  10. 【Json】Jackson将json转换成泛型List

    Jackson将json转换成泛型List 获取泛型类型 /** * 获取泛型类型 * * @return */ protected Class<T> getGenericsType() ...