作者: 阮一峰

日期: 2013年5月 1日

字符串匹配是计算机的基本任务之一。

举例来说,有一个字符串"BBC ABCDAB ABCDABCDABDE",我想知道,里面是否包含另一个字符串"ABCDABD"?

许多算法可以完成这个任务,Knuth-Morris-Pratt算法(简称KMP)是最常用的之一。它以三个发明者命名,起头的那个K就是著名科学家Donald Knuth。

这种算法不太容易理解,网上有很多解释,但读起来都很费劲。直到读到Jake Boxer的文章,我才真正理解这种算法。下面,我用自己的语言,试图写一篇比较好懂的KMP算法解释。

1.

首先,字符串"BBC ABCDAB ABCDABCDABDE"的第一个字符与搜索词"ABCDABD"的第一个字符,进行比较。因为B与A不匹配,所以搜索词后移一位。

2.

因为B与A不匹配,搜索词再往后移。

3.

就这样,直到字符串有一个字符,与搜索词的第一个字符相同为止。

4.

接着比较字符串和搜索词的下一个字符,还是相同。

5.

直到字符串有一个字符,与搜索词对应的字符不相同为止。

6.

这时,最自然的反应是,将搜索词整个后移一位,再从头逐个比较。这样做虽然可行,但是效率很差,因为你要把"搜索位置"移到已经比较过的位置,重比一遍。

7.

一个基本事实是,当空格与D不匹配时,你其实知道前面六个字符是"ABCDAB"。KMP算法的想法是,设法利用这个已知信息,不要把"搜索位置"移回已经比较过的位置,继续把它向后移,这样就提高了效率。

8.

怎么做到这一点呢?可以针对搜索词,算出一张《部分匹配表》(Partial Match Table)。这张表是如何产生的,后面再介绍,这里只要会用就可以了。

9.

已知空格与D不匹配时,前面六个字符"ABCDAB"是匹配的。查表可知,最后一个匹配字符B对应的"部分匹配值"为2,因此按照下面的公式算出向后移动的位数:

  移动位数 = 已匹配的字符数 - 对应的部分匹配值

因为 6 - 2 等于4,所以将搜索词向后移动4位。

10.

因为空格与C不匹配,搜索词还要继续往后移。这时,已匹配的字符数为2("AB"),对应的"部分匹配值"为0。所以,移动位数 = 2 - 0,结果为 2,于是将搜索词向后移2位。

11.

因为空格与A不匹配,继续后移一位。

12.

逐位比较,直到发现C与D不匹配。于是,移动位数 = 6 - 2,继续将搜索词向后移动4位。

13.

逐位比较,直到搜索词的最后一位,发现完全匹配,于是搜索完成。如果还要继续搜索(即找出全部匹配),移动位数 = 7 - 0,再将搜索词向后移动7位,这里就不再重复了。

14.

下面介绍《部分匹配表》是如何产生的。

首先,要了解两个概念:"前缀"和"后缀"。 "前缀"指除了最后一个字符以外,一个字符串的全部头部组合;"后缀"指除了第一个字符以外,一个字符串的全部尾部组合。

15.

"部分匹配值"就是"前缀"和"后缀"的最长的共有元素的长度。以"ABCDABD"为例,

  - "A"的前缀和后缀都为空集,共有元素的长度为0;

  - "AB"的前缀为[A],后缀为[B],共有元素的长度为0;

  - "ABC"的前缀为[A, AB],后缀为[BC, C],共有元素的长度0;

  - "ABCD"的前缀为[A, AB, ABC],后缀为[BCD, CD, D],共有元素的长度为0;

  - "ABCDA"的前缀为[A, AB, ABC, ABCD],后缀为[BCDA, CDA, DA, A],共有元素为"A",长度为1;

  - "ABCDAB"的前缀为[A, AB, ABC, ABCD, ABCDA],后缀为[BCDAB, CDAB, DAB, AB, B],共有元素为"AB",长度为2;

  - "ABCDABD"的前缀为[A, AB, ABC, ABCD, ABCDA, ABCDAB],后缀为[BCDABD, CDABD, DABD, ABD, BD, D],共有元素的长度为0。

16.

"部分匹配"的实质是,有时候,字符串头部和尾部会有重复。比如,"ABCDAB"之中有两个"AB",那么它的"部分匹配值"就是2("AB"的长度)。搜索词移动的时候,第一个"AB"向后移动4位(字符串长度-部分匹配值),就可以来到第二个"AB"的位置。

(完)

来源:http://www.ruanyifeng.com/blog/2013/05/Knuth%E2%80%93Morris%E2%80%93Pratt_algorithm.html

字符串匹配的KMP算法-16张图片看明白的更多相关文章

  1. Luogu 3375 【模板】KMP字符串匹配(KMP算法)

    Luogu 3375 [模板]KMP字符串匹配(KMP算法) Description 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来 ...

  2. 字符串匹配的 KMP算法

    一般字符串匹配过程 KMP算法是字符串匹配算法的一种改进版,一般的字符串匹配算法是:从主串(目标字符串)和模式串(待匹配字符串)的第一个字符开始比较,如果相等则继续匹配下一个字符, 如果不相等则从主串 ...

  3. 字符串匹配(KMP 算法 含代码)

    主要是针对字符串的匹配算法进行解说 有关字符串的基本知识 传统的串匹配法 模式匹配的一种改进算法KMP算法 网上一比較易懂的解说 小样例 1计算next 2计算nextval 代码 有关字符串的基本知 ...

  4. 字符串匹配的kmp算法 及 python实现

    一:背景 给定一个主串(以 S 代替)和模式串(以 P 代替),要求找出 P 在 S 中出现的位置,此即串的模式匹配问题. Knuth-Morris-Pratt 算法(简称 KMP)是解决这一问题的常 ...

  5. HDU 1711 Number Sequence (字符串匹配,KMP算法)

    HDU 1711 Number Sequence (字符串匹配,KMP算法) Description Given two sequences of numbers : a1, a2, ...... , ...

  6. 实现字符串匹配的KMP算法

    KMP算法是Knuth-Morris-Pratt算法的简称,它主要用于解决在一个长字符串S中匹配一个较短字符串s. 首先我们从整体来把我这个算法的思想. 字符串匹配的朴素算法: 我们容易想到朴素算法, ...

  7. 字符串匹配的KMP算法详解及C#实现

    字符串匹配是计算机的基本任务之一. 举例来说,有一个字符串"BBC ABCDAB ABCDABCDABDE",我想知道,里面是否包含另一个字符串"ABCDABD" ...

  8. 字符串匹配的KMP算法

    ~~~摘录 来源:阮一峰~~~ 字符串匹配是计算机的基本任务之一. 举例来说,有一个字符串”BBC ABCDAB ABCDABCDABDE”,我想知道,里面是否包含另一个字符串”ABCDABD”? 许 ...

  9. 字符串匹配与KMP算法实现

    >>字符串匹配问题 字符串匹配问题即在匹配串中寻找模式串是否出现, 首先想到的是使用暴力破解,也就是Brute Force(BF或蛮力搜索) 算法,将匹配串和模式串左对齐,然后从左向右一个 ...

随机推荐

  1. hdu 2642

    这题应该就是标准的二维树状数组,应该没什么难度 处理一下x,y等于0的情况就过了 #include <iostream> #include <cstdio> #include ...

  2. hdu 5013 优化疑问+dp

    http://acm.hdu.edu.cn/showproblem.php?pid=5013 m个游客,n座城市(m, n <= 16), 每个人从1走到n, 每次有一定概率停在原地,然后以后就 ...

  3. 1.虚拟机中安装ubuntu

    1.VMware安装很简单,全部默认安装即可. 2.安装完VMware之后,打开VMware,点击创建虚拟机 典型安装易出问题,所以这里选择自定义安装 安装过程选项配置如下 处理器数,核数,内存都可以 ...

  4. [leetcode 50]remove element

    1 题目 Given an array and a value, remove all instances of that value in place and return the new leng ...

  5. Excel VBA语句集

    Excel VBA语句集 引子 最近批阅学生成绩,用Excel 处理学生成绩,用到VBA 提高办公效率.需要经常查阅VBA的一些用法 正文 定制模块行为 (1) Option Explicit '强制 ...

  6. cvpr2015总结

    cvpr所有文章 http://cs.stanford.edu/people/karpathy/cvpr2015papers/ CNN Hypercolumns for Object Segmenta ...

  7. [NewCode 6] 重建二叉树

    题目描述 输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树.假设输入的前序遍历和中序遍历的结果中都不含重复的数字.例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7, ...

  8. ASP.NET中实现回调

    一.引言 在ASp.NET网页的默认模型中,用户通过单击按钮或其他操作的方式来提交页面,此时客户端将当前页面表单中的所有数据(包括一些自动生成的隐藏域)都提交到服务器端,服务器将重新实例化一个当前页面 ...

  9. Android开发教程 - 使用Data Binding Android Studio不能正常生成相关类/方法的解决办法

    本系列目录 使用Data Binding(一)介绍 使用Data Binding(二)集成与配置 使用Data Binding(三)在Activity中的使用 使用Data Binding(四)在Fr ...

  10. 利用adb 打开手机应用程序

    通过adb打开android应用,我们需要做的第一步,就是查看当前app的入口,第二部,就是通过命令启动我们的app入口 查看app的启动画面 在运行下面命令时,先启动想要通过adb打开的app #查 ...