题目链接

不同面额的钞票是可以分开考虑的。

↑其实并不很明白具体(证明?),反正是可以像背包一样去做。

f[x][i][j]表示用前x种面额钞票满足 A有i元 B有j元 (C有sum-i-j)所需交换的最少数量(=(abs(ΔA)+abs(ΔB)+abs(ΔA+ΔB))/2)。

(i,j是在本来就有的钞票的基础上的,因为初始得是f[0][sa][sb]=0,这样转移后的价格是根据差值变的)

转移时枚举i,j,再枚举最终A有a张x面值钞票,B有b张x面值钞票 (据此可以算出要交换的钞票数)。

复杂度。。看起来很大但是可能因为很多非法状态,所以跑的不慢。

//28276kb	676ms
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
#define gc() getchar()
const int val[7]={1,5,10,20,50,100},INF=0x3f3f3f3f; int n,have[3][7],num[7],f[7][1002][1002]; inline int read()
{
int now=0,f=1;register char c=gc();
for(;!isdigit(c);c=gc()) if(c=='-') f=-1;
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now*f;
} int main()
{
int x1=read(),x2=read(),x3=read(),sa=0,sb=0,sc=0;
for(int j=5; ~j; --j)
num[j]+=(have[0][j]=read()), sa+=have[0][j]*val[j];
for(int j=5; ~j; --j)
num[j]+=(have[1][j]=read()), sb+=have[1][j]*val[j];
for(int j=5; ~j; --j)
num[j]+=(have[2][j]=read()), sc+=have[2][j]*val[j];
int sum=sa+sb+sc;
int ea=sa-x1+x3,eb=sb+x1-x2,ec=sum-ea-eb;
memset(f,0x3f,sizeof f);
f[0][sa][sb]=0;
for(int x=0; x<6; ++x)
{
for(int i=0; i<=sum; ++i)
for(int k,j=0; i+j<=sum; ++j)
{
if(f[x][i][j]>=INF) continue;
k=sum-i-j;
int nowa,nowb,deltaA,deltaB;
for(int a=0; a<=num[x]; ++a)
{
deltaA=a-have[0][x], nowa=i+deltaA*val[x];
if(nowa<0) continue;//给出太多的x钞票不行
for(int b=0; a+b<=num[x]; ++b)
{
deltaB=b-have[1][x], nowb=j+deltaB*val[x];
if(nowb<0 || sum-nowa-nowb<0) continue;
f[x+1][nowa][nowb]=std::min(f[x+1][nowa][nowb],f[x][i][j]+((std::abs(deltaA)+std::abs(deltaB)+std::abs(deltaA+deltaB))>>1));
}
}
}
}
if(f[6][ea][eb]<INF) printf("%d",f[6][ea][eb]);
else puts("impossible"); return 0;
}

BZOJ.1021.[SHOI2008]循环的债务(DP)的更多相关文章

  1. [luogu4026 SHOI2008]循环的债务 (DP)

    传送门 吐槽洛谷难度标签qwq Solution 显然是一道神奇的DP,由于总钱数不变,我们只需要枚举前两个人的钱数就可知第三个人的钱数 DP的时候先枚举只用前k个币种,然后枚举前两个人的钱数,然后枚 ...

  2. 【BZOJ1021】[SHOI2008]循环的债务(动态规划)

    [BZOJ1021][SHOI2008]循环的债务(动态规划) 题面 BZOJ 洛谷 题解 感觉以前的题目都好小清新啊,我这种智商丢失的选手完全写不动. 这题看着就像一个\(dp\),并且我们发现每种 ...

  3. BZOJ 1021: [SHOI2008]Debt 循环的债务( dp )

    dp(i, j, k)表示考虑了前i种钱币(从小到大), Alice的钱数为j, Bob的钱数为k, 最小次数. 脑补一下可以发现, 只有A->B.C, B->A.C, C->A.B ...

  4. BZOJ 1021 [SHOI2008]Debt 循环的债务

    1021: [SHOI2008]Debt 循环的债务 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 694  Solved: 356[Submit][S ...

  5. BZOJ 1019: [SHOI2008]汉诺塔( dp )

    dp(x, y)表示第x根柱子上y个盘子移开后到哪根柱子以及花费步数..然后根据汉诺塔原理去转移... ------------------------------------------------ ...

  6. BZOJ1021 [SHOI2008]循环的债务

    Description Alice.Bob和Cynthia总是为他们之间混乱的债务而烦恼,终于有一天,他们决定坐下来一起解决这个问题. 不过,鉴别钞票的真伪是一件很麻烦的事情,于是他们决定要在清还债务 ...

  7. $bzoj1021-SHOI2008\ Debt$ 循环的债务 $dp$

    题面描述 \(Alice\).\(Bob\)和\(Cynthia\)总是为他们之间混乱的债务而烦恼,终于有一天,他们决定坐下来一起解决这个问题.不过,鉴别钞票的真伪是一件很麻烦的事情,于是他们决定要在 ...

  8. [SHOI2008]循环的债务

    Description Alice.Bob和Cynthia总是为他们之间混乱的债务而烦恼,终于有一天,他们决定坐下来一起解决这个问题. 不过,鉴别钞票的真伪是一件很麻烦的事情,于是他们决定要在清还债务 ...

  9. BZOJ.1023.[SHOI2008]cactus仙人掌图(DP)

    题目链接 类似求树的直径,可以用(类似)树形DP求每个点其子树(在仙人掌上就是诱导子图)最长链.次长链,用每个点子节点不同子树的 max{最长链}+max{次长链} 更新答案.(不需要存次长链,求解过 ...

随机推荐

  1. windows下非管理员权限安装mysql

    windows下,mysql有两种安装方式: 1.msi安装 2.zip安装 无论是哪种安装方式,都因为需要将mysql安装为一个服务,所以必须要以管理员权限安装. 因为公司的换了虚拟机,无法取得管理 ...

  2. windows10 升级1803后,远程错误提示“出现身份验证错误,要求的函数不受支持 CredSSP 加密 Oracle修正”的解决办法

    远程出现错误提示:出现身份验证错误,要求的函数不受支持 CredSSP 加密 Oracle修正 运行 gpedit.msc 本地组策略: 计算机配置>管理模板>系统>凭据分配> ...

  3. [转载]HTML5浏览器测试网站汇总

    http://www.cnblogs.com/javawebsoa/archive/2012/04/19/2458224.html 浏览器支持情况统计 When Can IUse:图表经常更新,展示了 ...

  4. JavaScript绝句的小研究

    前几日在网上看到一篇文章:JavaScript绝句,看了以后觉得里面的代码颇为有趣,不过文章里面只是简单的说了这样写的目的和结果,却没有令读者起到既知其然,又知其所以然的效果.这里简单写一篇小文章剖析 ...

  5. XMPP用户登录

    CHENYILONG Blog XMPP用户登录 技术博客http://www.cnblogs.com/ChenYilong/ 新浪微博http://weibo.com/luohanchenyilon ...

  6. continue和break区别

    break 语句用于跳出循环. continue 用于跳过循环中的一个迭代. 一个迭代,就是一次循环,continue终止本次循环,继续下一次循环: break,循环终止不再循环.

  7. UVALive 6176 Faulhaber's Triangle

    题目链接 http://acm.sdibt.edu.cn/vjudge/ojFiles/uvalive/pdf/61/6177.pdf 题意是  给定一个数n,代表着一共有n个人,且他们的身高从1到n ...

  8. 第10月第4天 Mac g++ sfml opendir

    1. g++ OpenGL.cpp -I/Users/temp/Downloads/SFML-2.4.2-osx-clang/include -L/usr/local/lib -framework O ...

  9. [转]CMake cache

    CMakeCache.txt 可以将其想象成一个配置文件(在Unix环境下,我们可以认为它等价于传递给configure的参数). CMakeLists.txt 中通过 set(... CACHE . ...

  10. RabbitMQ集群下队列存放消息的问题

    RabbitMQ中队列有两种模式 1.默认 Default 2.镜像 Mirror [类似于mongoDB,从一直在通过主的操作日志来进行同步] *如果将队列定义为镜像模式,那么这个队列也将区分主从, ...