[BZOJ2124]等差子序列/[CF452F]Permutation
[BZOJ2124]等差子序列/[CF452F]Permutation
题目大意:
一个\(1\sim n\)的排列\(A_{1\sim n}\),询问是否存在\(i,j(i<j)\),使得\(A_i<A_j\)且\(\frac{A_i+A_j}2\)在\(i,j\)之间出现。
BZOJ上的数据范围:\(n\le10000\);
CF上的数据范围:\(n\le3\times10^5\)。
思路:
从左到右枚举每一个数,用两个布尔数组\(b_0,b_1\)分别维护数值为\(i\)的数是否在当前数的左边、右边出现。然后将与当前数差值相等的位置对应起来(如,当前\(A_i=3\)时,将\(b_{0,1}\)与\(b_{1,5}\)对应起来),看一下对应位置有没有都是\(1\)的,如果有,则说明存在。
使用bitset优化可以做到\(\mathcal O(\frac{n^2}{32})\),但还是过不了。
发现如果只用一个数组\(b\)维护左边出现过的数,那么对于当前位置\(i\),若以\(b_{A_i}\)为中心的极大字符串是不是回文串,说明一个在左边出现,一个在右边出现,那么一定存在解。而确定中心的回文串判定可以用树状数组维护哈希实现。
事件复杂度\(\mathcal O(n\log n)\)。
源代码:
#include<cstdio>
#include<cctype>
#include<algorithm>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
const int N=300001;
const unsigned base=13;
unsigned pwr[N];
int n;
class FenwickTree {
private:
unsigned val[N];
int lowbit(const int &x) const {
return x&-x;
}
unsigned query(const int &p) const {
unsigned ret=0;
for(register int i=p;i;i-=lowbit(i)) {
ret+=val[i]*pwr[p-i];
}
return ret;
}
public:
void modify(const int &p) {
for(register int i=p;i<=n;i+=lowbit(i)) {
val[i]+=pwr[i-p];
}
}
unsigned query(const int &l,const int &r) const {
return query(r)-query(l-1)*pwr[r-l+1];
}
};
FenwickTree t[2];
int main() {
n=getint();
for(register int i=pwr[0]=1;i<=n;i++) {
pwr[i]=pwr[i-1]*base;
}
bool ans=false;
for(register int i=1;i<=n;i++) {
const int x=getint();
const int len=std::min(x-1,n-x);
ans|=t[0].query(x-len,x-1)!=t[1].query(n-x-len+1,n-x);
t[0].modify(x);
t[1].modify(n-x+1);
}
puts(ans?"YES":"NO");
return 0;
}
[BZOJ2124]等差子序列/[CF452F]Permutation的更多相关文章
- bzoj2124: 等差子序列线段树+hash
bzoj2124: 等差子序列线段树+hash 链接 https://www.lydsy.com/JudgeOnline/problem.php?id=2124 思路 找大于3的等差数列其实就是找等于 ...
- BZOJ2124 等差子序列(树状数组+哈希)
容易想到一种暴力的做法:枚举中间的位置,设该位置权值为x,如果其两边存在权值关于x对称即合法. 问题是如何快速寻找这个东西是否存在.考虑仅将该位置左边出现的权值标1.那么若在值域上若关于x对称的两权值 ...
- [bzoj2124]等差子序列_线段树_hash
等差子序列 bzoj-2124 题目大意:给定一个1~n的排列,问是否存在3个及以上的位置上的数构成连续的等差子序列. 注释:$1\le n\le 10^4$. 想法:这题就相当于是否存在3个数i,j ...
- [bzoj2124]等差子序列(hash+树状数组)
我又来更博啦 2124: 等差子序列 Time Limit: 3 Sec Memory Limit: 259 MBSubmit: 941 Solved: 348[Submit][Statu ...
- bzoj2124 等差子序列(hash+线段树)
2124: 等差子序列 Time Limit: 3 Sec Memory Limit: 259 MBSubmit: 719 Solved: 261[Submit][Status][Discuss] ...
- BZOJ2124:等差子序列(线段树,hash)
Description 给一个1到N的排列{Ai},询问是否存在1<=p1<p2<p3<p4<p5<…<pLen<=N (Len>=3), 使得A ...
- BZOJ2124: 等差子序列(树状数组&hash -> bitset 求是否存在长度为3的等差数列)
2124: 等差子序列 Time Limit: 3 Sec Memory Limit: 259 MBSubmit: 2354 Solved: 826[Submit][Status][Discuss ...
- BZOJ2124: 等差子序列
题意:给一个 1 到 N 的排列{Ai},询问是否存在 1<=p1<p2<p3<p4<p5<…<pLen<=N(Len>=3),使得 Ap1,Ap ...
- [bzoj2124]等差子序列——线段树+字符串哈希
题目大意 给一个1到N的排列\(A_i\),询问是否存在\(p_i\),\(i>=3\),使得\(A_{p_1}, A_{p_2}, ... ,A_{p_len}\)是一个等差序列. 题解 显然 ...
随机推荐
- docker 原理
docker项目的目标是实现轻量级的操作系统虚拟化,Docker的基础是Linux容器(LXC)等技术. 在LXC的基础上,Docker做了进一步的封装,让用户不关心容器的管理,使得操作更为简单.用户 ...
- C语言复习---用筛选法求100之内的素数
#include <stdio.h> #include <stdlib.h> #include <math.h> int main() { int i, j; ] ...
- 介绍C++11标准的变长参数模板
目前大部分主流编译器的最新版本均支持了C++11标准(官方名为ISO/IEC14882:2011)大部分的语法特性,其中比较难理解的新语法特性可能要属变长参数模板(variadic template) ...
- Linux - awk 文本处理工具六 - 日志关键字筛选
查看多少行 ? awk '{print NR}' access.log |tail -n1 日期时间筛选检测 awk '/Dec 10/ {print $0}' /opt/mongod/log/mon ...
- 深入浅出js事件
深入浅出js事件 一.事件流 事件冒泡和事件捕获分别由微软和网景公司提出,这两个概念是为了解决页面中事件流(事件发生顺序)的问题. <div id="outer"> & ...
- Android 7.0 行为变更
Android 7.0 除了提供诸多新特性和功能外,还对系统和 API 行为做出了各种变更.本文重点介绍您应该了解并在开发应用时加以考虑的一些主要变更. 如果您之前发布过 Android 应用,请注意 ...
- Java编程的逻辑 (65) - 线程的基本概念
本系列文章经补充和完善,已修订整理成书<Java编程的逻辑>,由机械工业出版社华章分社出版,于2018年1月上市热销,读者好评如潮!各大网店和书店有售,欢迎购买,京东自营链接:http: ...
- Select查询语句1
一.语法结构 select[all|distinct]select_list from table_name[join join_condition] where search_condition g ...
- JS框架图
一.JS框架
- Top 10 Best Free Netflow Analyzers and Collectors for Windows
https://www.pcwdld.com/best-free-netflow-analyzers-and-collectors-for-windows https://blog.csdn.net/ ...