[BZOJ2124]等差子序列/[CF452F]Permutation

题目大意:

一个\(1\sim n\)的排列\(A_{1\sim n}\),询问是否存在\(i,j(i<j)\),使得\(A_i<A_j\)且\(\frac{A_i+A_j}2\)在\(i,j\)之间出现。

BZOJ上的数据范围:\(n\le10000\);

CF上的数据范围:\(n\le3\times10^5\)。

思路:

从左到右枚举每一个数,用两个布尔数组\(b_0,b_1\)分别维护数值为\(i\)的数是否在当前数的左边、右边出现。然后将与当前数差值相等的位置对应起来(如,当前\(A_i=3\)时,将\(b_{0,1}\)与\(b_{1,5}\)对应起来),看一下对应位置有没有都是\(1\)的,如果有,则说明存在。

使用bitset优化可以做到\(\mathcal O(\frac{n^2}{32})\),但还是过不了。

发现如果只用一个数组\(b\)维护左边出现过的数,那么对于当前位置\(i\),若以\(b_{A_i}\)为中心的极大字符串是不是回文串,说明一个在左边出现,一个在右边出现,那么一定存在解。而确定中心的回文串判定可以用树状数组维护哈希实现。

事件复杂度\(\mathcal O(n\log n)\)。

源代码:

#include<cstdio>
#include<cctype>
#include<algorithm>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
const int N=300001;
const unsigned base=13;
unsigned pwr[N];
int n;
class FenwickTree {
private:
unsigned val[N];
int lowbit(const int &x) const {
return x&-x;
}
unsigned query(const int &p) const {
unsigned ret=0;
for(register int i=p;i;i-=lowbit(i)) {
ret+=val[i]*pwr[p-i];
}
return ret;
}
public:
void modify(const int &p) {
for(register int i=p;i<=n;i+=lowbit(i)) {
val[i]+=pwr[i-p];
}
}
unsigned query(const int &l,const int &r) const {
return query(r)-query(l-1)*pwr[r-l+1];
}
};
FenwickTree t[2];
int main() {
n=getint();
for(register int i=pwr[0]=1;i<=n;i++) {
pwr[i]=pwr[i-1]*base;
}
bool ans=false;
for(register int i=1;i<=n;i++) {
const int x=getint();
const int len=std::min(x-1,n-x);
ans|=t[0].query(x-len,x-1)!=t[1].query(n-x-len+1,n-x);
t[0].modify(x);
t[1].modify(n-x+1);
}
puts(ans?"YES":"NO");
return 0;
}

[BZOJ2124]等差子序列/[CF452F]Permutation的更多相关文章

  1. bzoj2124: 等差子序列线段树+hash

    bzoj2124: 等差子序列线段树+hash 链接 https://www.lydsy.com/JudgeOnline/problem.php?id=2124 思路 找大于3的等差数列其实就是找等于 ...

  2. BZOJ2124 等差子序列(树状数组+哈希)

    容易想到一种暴力的做法:枚举中间的位置,设该位置权值为x,如果其两边存在权值关于x对称即合法. 问题是如何快速寻找这个东西是否存在.考虑仅将该位置左边出现的权值标1.那么若在值域上若关于x对称的两权值 ...

  3. [bzoj2124]等差子序列_线段树_hash

    等差子序列 bzoj-2124 题目大意:给定一个1~n的排列,问是否存在3个及以上的位置上的数构成连续的等差子序列. 注释:$1\le n\le 10^4$. 想法:这题就相当于是否存在3个数i,j ...

  4. [bzoj2124]等差子序列(hash+树状数组)

    我又来更博啦     2124: 等差子序列 Time Limit: 3 Sec  Memory Limit: 259 MBSubmit: 941  Solved: 348[Submit][Statu ...

  5. bzoj2124 等差子序列(hash+线段树)

    2124: 等差子序列 Time Limit: 3 Sec  Memory Limit: 259 MBSubmit: 719  Solved: 261[Submit][Status][Discuss] ...

  6. BZOJ2124:等差子序列(线段树,hash)

    Description 给一个1到N的排列{Ai},询问是否存在1<=p1<p2<p3<p4<p5<…<pLen<=N (Len>=3), 使得A ...

  7. BZOJ2124: 等差子序列(树状数组&hash -> bitset 求是否存在长度为3的等差数列)

    2124: 等差子序列 Time Limit: 3 Sec  Memory Limit: 259 MBSubmit: 2354  Solved: 826[Submit][Status][Discuss ...

  8. BZOJ2124: 等差子序列

    题意:给一个 1 到 N 的排列{Ai},询问是否存在 1<=p1<p2<p3<p4<p5<…<pLen<=N(Len>=3),使得 Ap1,Ap ...

  9. [bzoj2124]等差子序列——线段树+字符串哈希

    题目大意 给一个1到N的排列\(A_i\),询问是否存在\(p_i\),\(i>=3\),使得\(A_{p_1}, A_{p_2}, ... ,A_{p_len}\)是一个等差序列. 题解 显然 ...

随机推荐

  1. SpringMVC关于ajax提交400错误(后台获取为null)

    400错误有三种情况 1:请求的数据量过大,不过这种情况一般很少见. 2:请求的data参数有误,确保每一个参数都能请求到. 注释:之前小白出现400错误,后台获取参数为null是因为第三种情况,经过 ...

  2. html文件中jquery与velocity变量中的$冲突的解决方法

    1.使用jQuery代替$. 如:jQuery.ajax(); 缺点:不适合扩展,一旦替换成第三方库时,那就麻烦大发 2.使用jQuery.noConflict. 如:var j = jQuery.n ...

  3. [转载]Windows 8 VHD 概述与使用

    http://www.cnblogs.com/tonycody/archive/2012/11/30/2796858.html

  4. [python]python三元表达式另类实现方式

    () variable = a if exper else b ()variable = (exper and [b] or [c])[] () variable = exper and b or c

  5. 第11月第31天 keyboardwillshow CGAffineTransformMakeTranslation

    1. - (void)dealloc { [[NSNotificationCenter defaultCenter] removeObserver:self]; } - (void)registerN ...

  6. Anaconda+django写出第一个web app(六)

    今天学习如何写一个注册用户的界面. 上一节的导航栏中我们修改了导航栏右侧的文字为register并将路径设置为/register,内容如下: <li><a href="/r ...

  7. Linux内核源码分析--内核启动之(1)zImage自解压过程(Linux-3.0 ARMv7) 【转】

    转自:http://blog.chinaunix.net/uid-25909619-id-4938388.html 研究内核源码和内核运行原理的时候,很总要的一点是要了解内核的初始情况,也就是要了解内 ...

  8. Visual Studio 2013/2015/2017快捷键(转)

    英文原文:19 Must-Know Visual Studio Keyboard Shortcuts 项目相关的快捷键 Ctrl + Shift + B = 生成项目 Ctrl + Alt + L = ...

  9. 不将EF连接字符串写在配置文件的方法

    edmx的构造函数: public DecorationMSEntities() : base(myConfig.DataBaseConnectionString, "DecorationM ...

  10. jQuery-介绍

    一:什么是jQuery jQuery 是一个 JavaScript 库. 二:安装 http://jquery.com/download/ http://jquery.cuishifeng.cn/ j ...