令f[i][j]表示连i条边时奇点个数为j的方案数,转移时讨论两奇点相连、一奇一偶相连、两偶点相连即可。注意这样会造成重边,那么算出恰好有一条重边的方案数并减掉。由于是有序地考虑每条边,每次还要除以i。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 1010
#define P 10007
int n,m,k,degree[N],f[N][N],inv[N],ans,cnt;
int C(int n,int m){return (n*(n-)>>)%P;}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj2169.in","r",stdin);
freopen("bzoj2169.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read(),k=read();
for (int i=;i<=m;i++)
{
int x=read(),y=read();
degree[x]^=,degree[y]^=;
}
for (int i=;i<=n;i++) if (degree[i]) cnt++;
inv[]=;inv[]=;for (int i=;i<=k;i++) inv[i]=P-(P/i)*inv[P%i]%P;
f[][cnt]=;
for (int i=;i<=k;i++)
for (int j=;j<=n;j++)
f[i][j]=(f[i-][j+]*C(j+,)%P+f[i-][j]*j%P*(n-j)%P+(j>=?f[i-][j-]*C(n-j+,)%P:)-(i>=?f[i-][j]*(C(n,)-i+)%P:)+P)%P*inv[i]%P;
cout<<f[k][];
return ;
}

BZOJ2169 连边(动态规划)的更多相关文章

  1. 增强学习(三)----- MDP的动态规划解法

    上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...

  2. 简单动态规划-LeetCode198

    题目:House Robber You are a professional robber planning to rob houses along a street. Each house has ...

  3. 动态规划 Dynamic Programming

    March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: ...

  4. 动态规划之最长公共子序列(LCS)

    转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...

  5. C#动态规划查找两个字符串最大子串

     //动态规划查找两个字符串最大子串         public static string lcs(string word1, string word2)         {            ...

  6. C#递归、动态规划计算斐波那契数列

    //递归         public static long recurFib(int num)         {             if (num < 2)              ...

  7. 动态规划求最长公共子序列(Longest Common Subsequence, LCS)

    1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...

  8. 【BZOJ1700】[Usaco2007 Jan]Problem Solving 解题 动态规划

    [BZOJ1700][Usaco2007 Jan]Problem Solving 解题 Description 过去的日子里,农夫John的牛没有任何题目. 可是现在他们有题目,有很多的题目. 精确地 ...

  9. POJ 1163 The Triangle(简单动态规划)

    http://poj.org/problem?id=1163 The Triangle Time Limit: 1000MS   Memory Limit: 10000K Total Submissi ...

随机推荐

  1. git回滚命令reset、revert的区别

    ##使用git,总有一天会遇到下面的问题: (1)改完代码匆忙提交,上线发现有问题,怎么办? 赶紧回滚. (2)改完代码测试也没有问题,但是上线发现你的修改影响了之前运行正常的代码报错,必须回滚. 所 ...

  2. VisualSVN server 搭建SVN服务器

    最好用VisualSVN server 服务端和 TortoiseSVN客户端搭配使用.

  3. Scala--特质

    一.为什么没有多重继承 c++允许多重继承 Java不允许多重继承,类只能继承一个超类,可以实现任意数量的接口. 如何继承这两个抽象基类? Scala提供“特质”而非接口:特质可以同时抽象方法和具体方 ...

  4. Git与TortoiseGit基本操作

    Git与TortoiseGit基本操作 1. GitHub操作 本节先简单介绍 git 的使用与操作, 然后再介绍 TortoiseGit 的使用与操作. 先看看SVN的操作吧, 最常见的是 检出(C ...

  5. 20155209 林虹宇Exp2 后门原理与实践

    Exp2 后门原理与实践 实验内容 一.使用netcat获取主机操作Shell,cron启动 使用netcat获取主机操作Shell Win获得Linux Shell 查看win的ip地址 windo ...

  6. 【个人】爬虫实践,利用xpath方式爬取数据之爬取虾米音乐排行榜

    实验网站:虾米音乐排行榜 网站地址:http://www.xiami.com/chart  难度系数:★☆☆☆☆ 依赖库:request.lxml的etree (安装lxml:pip install ...

  7. 如何完全卸载VS2010(亲自体验过) (转)

    1.首先用360卸载,当卸载完成后,提示有残余的话,就强力清除 2,接着,下载IobitUninstaller工具 3.按照下面进行卸载 1.Microsoft .NET Framework 4 框架 ...

  8. SQLServer数据库还原:无法在已有的mdf文件上还原文件

    如果提示无法在已有的mdf文件上还原文件,请修改如下位置

  9. JDBC详解系列(一)之流程

    ---[来自我的CSDN博客](http://blog.csdn.net/weixin_37139197/article/details/78838091)--- JDBC概述   使用JDBC也挺长 ...

  10. Svn 提示错误:previous operation has not finished 解决方案

    svn提交遇到恶心的问题,可能是因为上次cleanup中断后,进入死循环了. 解决方案: 找到你项目的.svn文件,查看是否存在wc.db 网上下载SQLite Expert工具,手动打开wc.db, ...