令f[i][j]表示连i条边时奇点个数为j的方案数,转移时讨论两奇点相连、一奇一偶相连、两偶点相连即可。注意这样会造成重边,那么算出恰好有一条重边的方案数并减掉。由于是有序地考虑每条边,每次还要除以i。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 1010
#define P 10007
int n,m,k,degree[N],f[N][N],inv[N],ans,cnt;
int C(int n,int m){return (n*(n-)>>)%P;}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj2169.in","r",stdin);
freopen("bzoj2169.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read(),k=read();
for (int i=;i<=m;i++)
{
int x=read(),y=read();
degree[x]^=,degree[y]^=;
}
for (int i=;i<=n;i++) if (degree[i]) cnt++;
inv[]=;inv[]=;for (int i=;i<=k;i++) inv[i]=P-(P/i)*inv[P%i]%P;
f[][cnt]=;
for (int i=;i<=k;i++)
for (int j=;j<=n;j++)
f[i][j]=(f[i-][j+]*C(j+,)%P+f[i-][j]*j%P*(n-j)%P+(j>=?f[i-][j-]*C(n-j+,)%P:)-(i>=?f[i-][j]*(C(n,)-i+)%P:)+P)%P*inv[i]%P;
cout<<f[k][];
return ;
}

BZOJ2169 连边(动态规划)的更多相关文章

  1. 增强学习(三)----- MDP的动态规划解法

    上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...

  2. 简单动态规划-LeetCode198

    题目:House Robber You are a professional robber planning to rob houses along a street. Each house has ...

  3. 动态规划 Dynamic Programming

    March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: ...

  4. 动态规划之最长公共子序列(LCS)

    转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...

  5. C#动态规划查找两个字符串最大子串

     //动态规划查找两个字符串最大子串         public static string lcs(string word1, string word2)         {            ...

  6. C#递归、动态规划计算斐波那契数列

    //递归         public static long recurFib(int num)         {             if (num < 2)              ...

  7. 动态规划求最长公共子序列(Longest Common Subsequence, LCS)

    1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...

  8. 【BZOJ1700】[Usaco2007 Jan]Problem Solving 解题 动态规划

    [BZOJ1700][Usaco2007 Jan]Problem Solving 解题 Description 过去的日子里,农夫John的牛没有任何题目. 可是现在他们有题目,有很多的题目. 精确地 ...

  9. POJ 1163 The Triangle(简单动态规划)

    http://poj.org/problem?id=1163 The Triangle Time Limit: 1000MS   Memory Limit: 10000K Total Submissi ...

随机推荐

  1. 蓝桥杯 历届试题 约数倍数选卡片 (经典数论+DFS)

    闲暇时,福尔摩斯和华生玩一个游戏: 在N张卡片上写有N个整数.两人轮流拿走一张卡片.要求下一个人拿的数字一定是前一个人拿的数字的约数或倍数.例如,某次福尔摩斯拿走的卡片上写着数字“6”,则接下来华生可 ...

  2. URL最大长度

    今天在测试Email Ticket的时候发现在进行Mark as Read/Unread操作时,请求是通过GET方式进行的.URL中列出了所有参与该操作的Ticket Id.于是,我想起GET请求是有 ...

  3. odoo之显示前端,数据,可选择

    def create(self,cr,uid,vals,context=None): if context is None: context ={} if vals.get('name','/')== ...

  4. Oracle中Error while performing database login with the XXXdriver; Listener refused the connection with the following error; ORA-12505,TNS:listener does not currently know of SID given inconnect descrip

    一次连接数据库怎么也连接不上,查了多方面资料,终于找到答案,总结 首先应该保证数据库的服务启动 在myeclipse的数据库视图中点 右键->new 弹出database driver的窗口,  ...

  5. 利用IDA6.6进行apk dex代码动态调试

    网上公开IDA6.6已经有一段时间,这个版本有个好处就是可以动态调试java代码.正好现在需要动态调试,所以顺便练习一下. 根据android的官方文档,如果要调试一个apk里面的dex代码,必须满足 ...

  6. c# 淘宝运单查询

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.W ...

  7. 2017-2018-2 《网络对抗技术》 20155302 第二周 Exp1 PC平台逆向破解(5)M

    2017-2018-2 <网络对抗技术> 20155302 第二周 Exp1 PC平台逆向破解(5)M 1-实践目标 1.1-实践介绍 本次实践的对象是一个名为pwn1的linux可执行文 ...

  8. # 2017-2018-2 20155319 『网络对抗技术』Exp8:Web基础

    2017-2018-2 20155319 『网络对抗技术』Exp8:Web基础 一.原理与实践说明 1.实践具体要求 (1).Web前端HTML(0.5分) 能正常安装.启停Apache.理解HTML ...

  9. [胡泽聪 趣题选讲]大包子环绕宝藏-[状压dp]

    Description 你有一个长方形的地图,每一个格子要么是一个障碍物,要么是一个有一定价值的宝藏,要么是一个炸弹,或者是一块空地.你的初始位置已经给出.你每次可以走到上.下.左.右这四个相邻的格子 ...

  10. Hadoop开发第6期---HDFS的shell操作

    一.HDFS的shell命令简介 我们都知道HDFS 是存取数据的分布式文件系统,那么对HDFS 的操作,就是文件系统的基本操作,比如文件的创建.修改.删除.修改权限等,文件夹的创建.删除.重命名等. ...