2019.01.22 51nod 1203 JZPLCM(线段树+链表)
传送门
一道很有意思的题。
题意简述:给一个数列,多次询问区间的lcmlcmlcm,答案对1e9+71e9+71e9+7取模。
思路:首先考虑到一个区间的lcmlcmlcm就是其中所有出现过的素数的最大幂的乘积。
因此想到分开维护每一个素数。
然后由于pap^apa对答案原本是有pap^apa自己那么多贡献的,现在考虑将它拆分成p,p2,p3,...,pap,p^2,p^3,...,p^ap,p2,p3,...,pa共aaa个数,每个数有ppp的贡献,那么对于答案的总贡献还是pap^apa的 。
所以我们把每一个数都拆分。
设p=a1k1a2k2...amkmp=a_1^{k_1}a_2^{k_2}...a_m^{k_m}p=a1k1a2k2...amkm
那么我们将它拆成一段二元组(a1,a1),(a12,a1),...,(a1k1,a1),(a2,a2),(a22,a2),...,(a2k2,a2),...,(am,am),(am2,am),...,(amkm,am)(a_1,a_1),(a_1^2,a_1),...,(a_1^{k_1},a_1),(a_2,a_2),(a_2^2,a_2),...,(a_2^{k_2},a_2),...,(a_m,a_m),(a_m^2,a_m),...,(a_m^{k_m},a_m)(a1,a1),(a12,a1),...,(a1k1,a1),(a2,a2),(a22,a2),...,(a2k2,a2),...,(am,am),(am2,am),...,(amkm,am)
第一元表示数的值,第二元表示数的贡献。
然后现在相当于在重构之后的序列里询问区间中所有数的贡献之积,相同的数贡献只能算一次,这不就是HHHHHH的项链吗,于是用链表维护一下即可。
代码:
#include<bits/stdc++.h>
#define ri register int
#define fi first
#define se second
using namespace std;
inline int read(){
int ans=0;
char ch=getchar();
while(!isdigit(ch))ch=getchar();
while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar();
return ans;
}
typedef long long ll;
const int mod=1e9+7,N=50005,M=8e5+5;
int n,m,tot,inv[N],L[M],R[M],pos[N],nxt[M],ans[N],bit[M];
struct Query{int l,r,id;}qry[N];
typedef pair<int,int> pii;
pii val[M];
inline bool cmp(const Query&a,const Query&b){return a.l<b.l;}
inline int mul(int a,int b){return (ll)a*b%mod;}
inline int lowbit(int x){return x&-x;}
inline void update(int x,int v){for(ri i=x;i<=tot;i+=lowbit(i))bit[i]=mul(bit[i],v);}
inline int query(int x){int ret=1;for(ri i=x;i;i-=lowbit(i))ret=mul(ret,bit[i]);return ret;}
int main(){
n=read(),m=read(),inv[1]=1;
for(ri i=2;i<=50000;++i)inv[i]=mul(inv[mod%i],mod-mod/i);
for(ri i=1,x,tmp,lim;i<=n;++i){
x=read();
if(x==1)continue;
lim=sqrt(x),L[i]=tot+1;
for(ri j=2;j<=lim;++j){
if(x==x/j*j){
tmp=j;
while(x==x/j*j)x/=j,val[++tot]=pii(tmp,j),tmp*=j;
}
}
if(x^1)val[++tot]=pii(x,x);
R[i]=tot;
}
fill(bit+1,bit+tot+1,1);
for(ri i=1;i<=tot;++i){
if(pos[val[i].fi])nxt[pos[val[i].fi]]=i;
else update(i,val[i].se);
pos[val[i].fi]=i;
}
for(ri i=1;i<=m;++i)qry[i].l=L[read()],qry[i].r=R[read()],qry[i].id=i;
sort(qry+1,qry+m+1,cmp);
for(ri i=1,j=0;i<=tot;++i){
while(qry[j+1].l==i)++j,ans[qry[j].id]=query(qry[j].r);
update(i,inv[val[i].se]);
if(nxt[i])update(nxt[i],val[nxt[i]].se);
}
for(ri i=1;i<=m;++i)cout<<ans[i]<<'\n';
return 0;
}
2019.01.22 51nod 1203 JZPLCM(线段树+链表)的更多相关文章
- 2019.01.19 bzoj5457: 城市(线段树合并)
传送门 线段树合并菜题. 题意简述:给一棵树,每个节点有bib_ibi个aia_iai民族的人,问对于每棵子树,子树中哪个民族的人最多,有多少人. 思路: 直接上线段树合并,边合并边维护答案即可. ...
- 2019.01.22 bzoj3333: 排队计划(逆序对+线段树)
传送门 题意简述:给出一个序列,支持把ppp~nnn中所有小于等于apa_pap的'扯出来排序之后再放回去,要求动态维护全局逆序对. 思路:我们令fif_ifi表示第iii个位置之后比它大的数的个 ...
- 2019.01.22 hdu5195 DZY Loves Topological Sorting(贪心+线段树)
传送门 题意简述:给出一张DAGDAGDAG,要求删去不超过kkk条边问最后拓扑序的最大字典序是多少. 思路:贪心帮当前不超过删边上限且权值最大的点删边,用线段树维护一下每个点的入度来支持查询即可. ...
- 2019.01.22 bzoj2874: 训练士兵(主席树)
传送门 题意简述:给出一个n∗mn*mn∗m的矩阵n,m≤1e8n,m\le1e8n,m≤1e8,支持矩形加,矩形求和,强制在线. 思路:第一眼二维动态开点线段树,上网去搜有没有这种做法发现会被卡时空 ...
- 2019.01.19 codeforces343D.Water Tree(树剖+ODT)
传送门 ODTODTODT板子题. 支持子树01覆盖,路径01覆盖,询问一个点的值. 思路:当然可以用树剖+线段树,不过树剖+ODTODTODT也可以很好的水过去. 注意修改路径时每次跳重链都要修改. ...
- 51nod 1272 思维/线段树
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1272 1272 最大距离 题目来源: Codility 基准时间限制:1 ...
- Tensorflow学习笔记2019.01.22
tensorflow学习笔记2 edit by Strangewx 2019.01.04 4.1 机器学习基础 4.1.1 一般结构: 初始化模型参数:通常随机赋值,简单模型赋值0 训练数据:一般打乱 ...
- 2019.02.26 bzoj4311: 向量(线段树分治+凸包)
传送门 题意: 支持插入一个向量,删去某一个现有的向量,查询现有的所有向量与给出的一个向量的点积的最大值. 思路: 考虑线段树分治. 先对于每个向量处理出其有效时间放到线段树上面,然后考虑查询:对于两 ...
- 2019.01.20 bzoj3999: [TJOI2015]旅游(树链剖分)
传送门 树链剖分菜题. 题意不清差评. 题意简述(保证清晰):给一棵带权的树,每次从aaa走到bbb,在走过的路径上任意找两个点,求后访问的点与先访问的点点权差的最大值. 思路: 考虑暴力:维护路径的 ...
随机推荐
- 公告栏添加时钟——利用canvas画出一个时钟
前言 最近在学习HTML5标签,学到Canvas,觉得很有趣.便在慕课网找了个demo练手.就是Canvas时钟. 对于canvas,w3shcool上是这么描述的: HTML5 <canvas ...
- mac上将代码上传到github
前言 有时我们会写一些小程序来学习新的知识,但是完事之后过一段时间可能会忘记,最好的办法就是找到原来的代码看一看.现在可以将代码免费托管到一些网站上,其中最著名的非github莫属了, 今天就把这个过 ...
- python使用elasticsearch模块操作elasticsearch
1.创建索引 命令如下 from elasticsearch import Elasticsearch es = Elasticsearch([{"host":"10.8 ...
- swift - scrollview 判断左右移动, 以及上下两个view联动
核心代码 1. 2. 3. 界面代码VFL /* 浏览作品view*/ import UIKit /** * 图片浏览器(大图和缩略图) */ class JYBrowseWorksView: UIV ...
- vue-router2
六,导航钩子 导航钩子函数主要是在导航跳转的时候做一些操作,比如跳转页面之前,进行判断 进而选择跳转到哪里 钩子函数根据生效范围根据其生效范围可以分为全局钩子函数,路由独享钩子函数 和 组件钩子函数. ...
- 如何查看Firefox中保存的登录密码
问:以前使用Firefox浏览器登录一个论坛,并且临时申请了一个账号,在使用Firefox登录时选择让它记住密码了,后来,我忘记了那个论坛的密码,但是可以使用Firefox直接登录.现在能不能查看密码 ...
- (五)ROS节点
一. 理解ROS 节点: ROS的节点: 可以说是一个可运行的程序.当然这个程序可不简单.因为它可以接受来自ROS网络上其他可运行程序的输出信息,也可以发送信息给ROS网络,被其他 ROS 可运行程序 ...
- 一、MySQL的连接建立与权限
一.MySQL的连接建立与权限 写这些的目的一是记录下工作这几年所学,算是成长脚印吧.二是复习一遍,也给自己当笔记看,通篇观点都属于个人理解较多.读者观看的时候也需要自己判断下是否正确,另外,记下一段 ...
- sqlserver中为节约存储空间的收缩数据库机制
1.收缩数据库: 删除数据库的每个文件中已经分配单还没有使用的页,首座后数据库空间自动减少 2.收缩方式: (1)自动收缩数据库 选中数据库--->右击--->属性 在常规这里我们可以看到 ...
- EF 更新实体 The instance of entity type 'BabyEvent' cannot be tracked because another instance
加上AsNoTracking. 人不能两次踏入同一条河. 我 就踏入了.o(╥﹏╥)o