什么垃圾比赛,A题说的什么鬼楞是没看懂。就我只会BD(其实C是个大水题二分),垃圾游戏,技不如人,肝败吓疯,告辞,口胡了E就睡觉了。

B

很容易发现,存在一种方案,使得相同字母连在一起,然后发现,当字母出现种类数大于等于4时,可以奇偶性相间地连接,然后讨论种类数<=3的:种类数为1,显然直接输出;种类数为2,若两字母相邻则无解,否则直接输出;种类数为3,若三字母相邻则无解,否则按照213/231(至少一种符合条件)输出。

#include<bits/stdc++.h>
using namespace std;
const int N=;
int T,n,m,ans,sum[N],id[N];
char s[N];
int main()
{
scanf("%d",&T);
while(T--)
{
scanf("%s",s+),n=strlen(s+);
memset(sum,,sizeof sum);
memset(id,,sizeof id);
for(int i=;i<=n;i++)sum[s[i]-'a'+]++;
int num=;
for(int i=;i<=;i++)if(sum[i])id[i]=++num;
if(num==)
{
for(int i=;i<=n;i++)printf("%c",s[i]);
}
else if(num>=)
{
for(int i=;i>=;i--)
if(id[i]&)
{
for(int j=;j<=sum[i];j++)printf("%c",'a'+i-);
}
for(int i=;i>=;i--)
if(id[i]&&id[i]%==)
{
for(int j=;j<=sum[i];j++)printf("%c",'a'+i-);
}
}
else if(num==)
{
int flag=;
for(int i=;i<=;i++)if(sum[i]&&sum[i-]&&sum[i+])flag=;
if(flag)printf("No answer");
else{
for(int i=;i<=;i++)
for(int j=;j<i;j++)
for(int k=i+;k<=;k++)
if(sum[j]&&sum[i]&&sum[k])
{
for(int t=;t<=sum[i];t++)printf("%c",'a'+i-);
if(j==i-)
{
for(int t=;t<=sum[k];t++)printf("%c",'a'+k-);
for(int t=;t<=sum[j];t++)printf("%c",'a'+j-);
}
else{
for(int t=;t<=sum[j];t++)printf("%c",'a'+j-);
for(int t=;t<=sum[k];t++)printf("%c",'a'+k-);
}
}
}
}
else{
int flag=;
for(int i=;i<=;i++)if(sum[i]&&sum[i+])flag=;
if(flag)printf("No answer");
else{
for(int i=;i<=;i++)if(sum[i])
{
for(int j=;j<=sum[i];j++)printf("%c",'a'+i-);
}
}
}
puts("");
}
}

D

很容易想到一个DP,令f[i]表示以i为根的子树,从下面的节点走上来,最后一步是黑边的点数,g[i]表示全走白边的点数,于是就有f[u]=Σ(f[son]+g[son]+1),son为经过黑边的son,g[u]=Σ(g[son]+1),son为经过白边的son。然后这个东西很容易换根DP,根据黑白边讨论一下即可。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=2e5+;
int n,cnt,f[N],g[N],nf[N],ng[N],hd[N],v[N<<],nxt[N<<],w[N<<];
ll ans;
void adde(int x,int y,int z){v[++cnt]=y,nxt[cnt]=hd[x],w[cnt]=z,hd[x]=cnt;}
void dfs(int u,int fa)
{
for(int i=hd[u];i;i=nxt[i])
if(v[i]!=fa)
{
dfs(v[i],u);
if(!w[i])g[u]+=g[v[i]]+;
else f[u]+=f[v[i]]+g[v[i]]+;
}
}
void dfs2(int u,int fa)
{
ans+=nf[u]+ng[u];
for(int i=hd[u];i;i=nxt[i])
if(v[i]!=fa)
{
if(!w[i])nf[v[i]]=f[v[i]],ng[v[i]]=ng[u];
else nf[v[i]]=nf[u]-g[v[i]]+ng[u],ng[v[i]]=g[v[i]];
dfs2(v[i],u);
}
}
int main()
{
scanf("%d",&n);
for(int i=,x,y,z;i<n;i++)scanf("%d%d%d",&x,&y,&z),adde(x,y,z),adde(y,x,z);
dfs(,);
nf[]=f[],ng[]=g[],dfs2(,);
cout<<ans;
}

E

口胡了一个分治做法,一写发现,它居然过了。感觉本题比D简单。

做法大致如下:直接算很难处理,考虑分治,对于长度大于等于3的区间[l,r],考虑覆盖mid和mid+1的所有区间,可以把[l,r]分为[l,mid]和[mid+1,r]两半,然后mx[i]对于左半部分表示后缀最大值,对于右半部分表示前缀最大值,然后枚举位置计算另一端的位置是否符合题意,因为区间的max值出现在两端的mx之一,所以左右都搜一下即可统计所有答案。复杂度O(nlogn)

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=2e5+;
int n,ans,a[N],b[N],mx[N];
void solve(int l,int r)
{
if(l+>=r)return;
int mid=l+r>>;
solve(l,mid),solve(mid+,r);
mx[mid]=a[mid];for(int i=mid-;i>=l;i--)mx[i]=max(mx[i+],a[i]);
mx[mid+]=a[mid+];for(int i=mid+;i<=r;i++)mx[i]=max(mx[i-],a[i]);
for(int i=l;i<=mid;i++)
{
int pos=b[mx[i]-a[i]];
if(pos>mid&&pos<=r&&mx[pos]<mx[i])ans++;
}
for(int i=mid+;i<=r;i++)
{
int pos=b[mx[i]-a[i]];
if(pos>=l&&pos<=mid&&mx[pos]<mx[i])ans++;
}
}
int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)scanf("%d",&a[i]),b[a[i]]=i;
solve(,n);
printf("%d",ans);
}

F

很容易想到dp,令f[i][j]表示第i轮当前卡为j且游戏继续的概率,然后根据第i轮每张卡有1/(n-i+1)的概率选中,直接写个前缀和,根据题意暴力DP转移即可,代码20行。

感觉这题更简单,CF这场什么垃圾排题顺序,难怪Unrated

#include<bits/stdc++.h>
using namespace std;
const int N=,mod=;
int n,ans,a[N],s[N],inv[N],f[N][N];
int main()
{
scanf("%d",&n);
for(int i=,x;i<=n;i++)scanf("%d",&x),a[x]++;
for(int i=n;i;i--)s[i]=s[i+]+a[i];
inv[]=;for(int i=;i<=n;i++)inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;
for(int i=;i<=n;i++)f[][i]=1ll*a[i]*inv[n]%mod;
for(int i=;i<=n;i++)
for(int j=,sum=;j<=n;j++)
f[i][j]=1ll*a[j]*sum%mod,sum=(sum+1ll*f[i-][j]*inv[n-i+])%mod;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
if(a[j]>)ans=(ans+1ll*f[i][j]%mod*(a[j]-)%mod*inv[n-i])%mod;
printf("%d",ans);
}

G

看了下是个没有意思的大模拟,不想写也不会写,咕了。

感觉真实难度顺序:C<B<E<D=F<G<A

Educational Codeforces Round 64(Unrated for Div.1+Div. 2)的更多相关文章

  1. Educational Codeforces Round 64 (Rated for Div. 2)题解

    Educational Codeforces Round 64 (Rated for Div. 2)题解 题目链接 A. Inscribed Figures 水题,但是坑了很多人.需要注意以下就是正方 ...

  2. Educational Codeforces Round 64部分题解

    Educational Codeforces Round 64部分题解 A 题目大意:给定三角形(高等于低的等腰),正方形,圆,在满足其高,边长,半径最大(保证在上一个图形的内部)的前提下. 判断交点 ...

  3. Educational Codeforces Round 64 部分题解

    Educational Codeforces Round 64 部分题解 不更了不更了 CF1156D 0-1-Tree 有一棵树,边权都是0或1.定义点对\(x,y(x\neq y)\)合法当且仅当 ...

  4. Educational Codeforces Round 64(ECR64)

    Educational Codeforces Round 64 CodeForces 1156A 题意:1代表圆,2代表正三角形,3代表正方形.给一个只含1,2,3的数列a,ai+1内接在ai内,求总 ...

  5. Educational Codeforces Round 64 (Rated for Div. 2) A,B,C,D,E,F

    比赛链接: https://codeforces.com/contest/1156 A. Inscribed Figures 题意: 给出$n(2\leq n\leq 100)$个数,只含有1,2,3 ...

  6. Educational Codeforces Round 64 (Rated for Div. 2) (线段树二分)

    题目:http://codeforces.com/contest/1156/problem/E 题意:给你1-n  n个数,然后求有多少个区间[l,r] 满足    a[l]+a[r]=max([l, ...

  7. Educational Codeforces Round 64 (Rated for Div. 2)D(并查集,图)

    #include<bits/stdc++.h>using namespace std;int f[2][200007],s[2][200007];//并查集,相邻点int find_(in ...

  8. Educational Codeforces Round 64 (Div. 2)

    A.3*3讨论即可,注意正方形套圆套三角形只有6个点. #include<cstdio> #include<cstring> #include<iostream> ...

  9. Educational Codeforces Round 64 -C(二分)

    题目链接:https://codeforces.com/contest/1156/problem/C 题意:给出n个数和整形数z,定义一对数为差>=z的数,且每个数最多和一个数组成对,求最多有多 ...

随机推荐

  1. 五、CI框架之通过带路径的view视图路径访问

    一.如果需要现在的某个目录的View界面,需要在controller中写入文件路径 二.访问http://127.0.0.1/CodeIgniter-3.1.10/index.php/显示如下: 不忘 ...

  2. iOS 保存图片(视频)到相册

    1.C语言函数方式实现 注意:UIImageWriteToSavedPhotosAlbum方法必须实现代理方法,否则会崩溃. //参数1:图片对象 //参数2:成功方法绑定的target //参数3: ...

  3. 从AppleWatch4发布后对手股价大跌看可穿戴市场未来

    万众瞩目的苹果秋季发布会终于落下了帷幕,这场发布会既有惊喜,也有遗憾.遗憾的是新款iPad Pro.廉价版Macbook air没有亮相.iPhone系列价格较贵等,惊喜的则是iPhone的处理器依然 ...

  4. GIT 操作文档

    https://git-scm.com/book/en/v2 安装git地址:https://git-scm.com/downloads 一.初始化设置 1.设置你用户名称与邮件地址(每一个 Git ...

  5. [NOI2019]弹跳(KD-Tree)

    被jump送退役了,很生气. 不过切了这题也进不了队,行吧. 退役后写了一下,看到二维平面应该就是KD树,然后可以在KD树上做最短路,然后建立堆和KDTree.然后每次更新则是直接把最短路上的节点删掉 ...

  6. xv6 makefile

    1. xv6.img的构建 在makefile中 bootblock: bootasm.S bootmain.c $(CC) $(CFLAGS) -fno-pic -O -nostdinc -I. - ...

  7. 直击JDD | 共建智能新城 京东云让城市生活变得简单美好

    技术快速革新,创新持续激发.在"智能+"时代,云计算.大数据.5G等新技术,已成为社会生产方式变革.创新人类生活空间的重要力量--11月19日,JDD-2019京东全球科技探索者大 ...

  8. selenium爬取优酷页面并下载图片

    from selenium import webdriver import requests driver = webdriver.Chrome() #打开优酷 driver.get("ht ...

  9. Cobub无码埋点关键技术的实现

    随着大数据时代的到来,数据采集也已经变的越来越重要.前端埋点作为一个比较成熟的数据接入手段被广泛应用着.目前埋点分为两种方式,有码与无码埋点.有码埋点比较容易理解,即调用SDK的API,在代码中插入埋 ...

  10. 机器学习分布式框架horovod安装 (Linux环境)

    1.openmi 下载安装 下载连接: https://download.open-mpi.org/release/open-mpi/v4.0/openmpi-4.0.1.tar.gz 安装命令 1 ...