什么垃圾比赛,A题说的什么鬼楞是没看懂。就我只会BD(其实C是个大水题二分),垃圾游戏,技不如人,肝败吓疯,告辞,口胡了E就睡觉了。

B

很容易发现,存在一种方案,使得相同字母连在一起,然后发现,当字母出现种类数大于等于4时,可以奇偶性相间地连接,然后讨论种类数<=3的:种类数为1,显然直接输出;种类数为2,若两字母相邻则无解,否则直接输出;种类数为3,若三字母相邻则无解,否则按照213/231(至少一种符合条件)输出。

#include<bits/stdc++.h>
using namespace std;
const int N=;
int T,n,m,ans,sum[N],id[N];
char s[N];
int main()
{
scanf("%d",&T);
while(T--)
{
scanf("%s",s+),n=strlen(s+);
memset(sum,,sizeof sum);
memset(id,,sizeof id);
for(int i=;i<=n;i++)sum[s[i]-'a'+]++;
int num=;
for(int i=;i<=;i++)if(sum[i])id[i]=++num;
if(num==)
{
for(int i=;i<=n;i++)printf("%c",s[i]);
}
else if(num>=)
{
for(int i=;i>=;i--)
if(id[i]&)
{
for(int j=;j<=sum[i];j++)printf("%c",'a'+i-);
}
for(int i=;i>=;i--)
if(id[i]&&id[i]%==)
{
for(int j=;j<=sum[i];j++)printf("%c",'a'+i-);
}
}
else if(num==)
{
int flag=;
for(int i=;i<=;i++)if(sum[i]&&sum[i-]&&sum[i+])flag=;
if(flag)printf("No answer");
else{
for(int i=;i<=;i++)
for(int j=;j<i;j++)
for(int k=i+;k<=;k++)
if(sum[j]&&sum[i]&&sum[k])
{
for(int t=;t<=sum[i];t++)printf("%c",'a'+i-);
if(j==i-)
{
for(int t=;t<=sum[k];t++)printf("%c",'a'+k-);
for(int t=;t<=sum[j];t++)printf("%c",'a'+j-);
}
else{
for(int t=;t<=sum[j];t++)printf("%c",'a'+j-);
for(int t=;t<=sum[k];t++)printf("%c",'a'+k-);
}
}
}
}
else{
int flag=;
for(int i=;i<=;i++)if(sum[i]&&sum[i+])flag=;
if(flag)printf("No answer");
else{
for(int i=;i<=;i++)if(sum[i])
{
for(int j=;j<=sum[i];j++)printf("%c",'a'+i-);
}
}
}
puts("");
}
}

D

很容易想到一个DP,令f[i]表示以i为根的子树,从下面的节点走上来,最后一步是黑边的点数,g[i]表示全走白边的点数,于是就有f[u]=Σ(f[son]+g[son]+1),son为经过黑边的son,g[u]=Σ(g[son]+1),son为经过白边的son。然后这个东西很容易换根DP,根据黑白边讨论一下即可。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=2e5+;
int n,cnt,f[N],g[N],nf[N],ng[N],hd[N],v[N<<],nxt[N<<],w[N<<];
ll ans;
void adde(int x,int y,int z){v[++cnt]=y,nxt[cnt]=hd[x],w[cnt]=z,hd[x]=cnt;}
void dfs(int u,int fa)
{
for(int i=hd[u];i;i=nxt[i])
if(v[i]!=fa)
{
dfs(v[i],u);
if(!w[i])g[u]+=g[v[i]]+;
else f[u]+=f[v[i]]+g[v[i]]+;
}
}
void dfs2(int u,int fa)
{
ans+=nf[u]+ng[u];
for(int i=hd[u];i;i=nxt[i])
if(v[i]!=fa)
{
if(!w[i])nf[v[i]]=f[v[i]],ng[v[i]]=ng[u];
else nf[v[i]]=nf[u]-g[v[i]]+ng[u],ng[v[i]]=g[v[i]];
dfs2(v[i],u);
}
}
int main()
{
scanf("%d",&n);
for(int i=,x,y,z;i<n;i++)scanf("%d%d%d",&x,&y,&z),adde(x,y,z),adde(y,x,z);
dfs(,);
nf[]=f[],ng[]=g[],dfs2(,);
cout<<ans;
}

E

口胡了一个分治做法,一写发现,它居然过了。感觉本题比D简单。

做法大致如下:直接算很难处理,考虑分治,对于长度大于等于3的区间[l,r],考虑覆盖mid和mid+1的所有区间,可以把[l,r]分为[l,mid]和[mid+1,r]两半,然后mx[i]对于左半部分表示后缀最大值,对于右半部分表示前缀最大值,然后枚举位置计算另一端的位置是否符合题意,因为区间的max值出现在两端的mx之一,所以左右都搜一下即可统计所有答案。复杂度O(nlogn)

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=2e5+;
int n,ans,a[N],b[N],mx[N];
void solve(int l,int r)
{
if(l+>=r)return;
int mid=l+r>>;
solve(l,mid),solve(mid+,r);
mx[mid]=a[mid];for(int i=mid-;i>=l;i--)mx[i]=max(mx[i+],a[i]);
mx[mid+]=a[mid+];for(int i=mid+;i<=r;i++)mx[i]=max(mx[i-],a[i]);
for(int i=l;i<=mid;i++)
{
int pos=b[mx[i]-a[i]];
if(pos>mid&&pos<=r&&mx[pos]<mx[i])ans++;
}
for(int i=mid+;i<=r;i++)
{
int pos=b[mx[i]-a[i]];
if(pos>=l&&pos<=mid&&mx[pos]<mx[i])ans++;
}
}
int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)scanf("%d",&a[i]),b[a[i]]=i;
solve(,n);
printf("%d",ans);
}

F

很容易想到dp,令f[i][j]表示第i轮当前卡为j且游戏继续的概率,然后根据第i轮每张卡有1/(n-i+1)的概率选中,直接写个前缀和,根据题意暴力DP转移即可,代码20行。

感觉这题更简单,CF这场什么垃圾排题顺序,难怪Unrated

#include<bits/stdc++.h>
using namespace std;
const int N=,mod=;
int n,ans,a[N],s[N],inv[N],f[N][N];
int main()
{
scanf("%d",&n);
for(int i=,x;i<=n;i++)scanf("%d",&x),a[x]++;
for(int i=n;i;i--)s[i]=s[i+]+a[i];
inv[]=;for(int i=;i<=n;i++)inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;
for(int i=;i<=n;i++)f[][i]=1ll*a[i]*inv[n]%mod;
for(int i=;i<=n;i++)
for(int j=,sum=;j<=n;j++)
f[i][j]=1ll*a[j]*sum%mod,sum=(sum+1ll*f[i-][j]*inv[n-i+])%mod;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
if(a[j]>)ans=(ans+1ll*f[i][j]%mod*(a[j]-)%mod*inv[n-i])%mod;
printf("%d",ans);
}

G

看了下是个没有意思的大模拟,不想写也不会写,咕了。

感觉真实难度顺序:C<B<E<D=F<G<A

Educational Codeforces Round 64(Unrated for Div.1+Div. 2)的更多相关文章

  1. Educational Codeforces Round 64 (Rated for Div. 2)题解

    Educational Codeforces Round 64 (Rated for Div. 2)题解 题目链接 A. Inscribed Figures 水题,但是坑了很多人.需要注意以下就是正方 ...

  2. Educational Codeforces Round 64部分题解

    Educational Codeforces Round 64部分题解 A 题目大意:给定三角形(高等于低的等腰),正方形,圆,在满足其高,边长,半径最大(保证在上一个图形的内部)的前提下. 判断交点 ...

  3. Educational Codeforces Round 64 部分题解

    Educational Codeforces Round 64 部分题解 不更了不更了 CF1156D 0-1-Tree 有一棵树,边权都是0或1.定义点对\(x,y(x\neq y)\)合法当且仅当 ...

  4. Educational Codeforces Round 64(ECR64)

    Educational Codeforces Round 64 CodeForces 1156A 题意:1代表圆,2代表正三角形,3代表正方形.给一个只含1,2,3的数列a,ai+1内接在ai内,求总 ...

  5. Educational Codeforces Round 64 (Rated for Div. 2) A,B,C,D,E,F

    比赛链接: https://codeforces.com/contest/1156 A. Inscribed Figures 题意: 给出$n(2\leq n\leq 100)$个数,只含有1,2,3 ...

  6. Educational Codeforces Round 64 (Rated for Div. 2) (线段树二分)

    题目:http://codeforces.com/contest/1156/problem/E 题意:给你1-n  n个数,然后求有多少个区间[l,r] 满足    a[l]+a[r]=max([l, ...

  7. Educational Codeforces Round 64 (Rated for Div. 2)D(并查集,图)

    #include<bits/stdc++.h>using namespace std;int f[2][200007],s[2][200007];//并查集,相邻点int find_(in ...

  8. Educational Codeforces Round 64 (Div. 2)

    A.3*3讨论即可,注意正方形套圆套三角形只有6个点. #include<cstdio> #include<cstring> #include<iostream> ...

  9. Educational Codeforces Round 64 -C(二分)

    题目链接:https://codeforces.com/contest/1156/problem/C 题意:给出n个数和整形数z,定义一对数为差>=z的数,且每个数最多和一个数组成对,求最多有多 ...

随机推荐

  1. mysql 锁表的处理方式

    MySQL错误:ERROR 1205 (HY000): Lock wait timeout   处理方案:   执行mysql命令:show full processlist;   然后找出插入语句的 ...

  2. Spring注解 @Autowired

    @Autowired可以对成员变量.方法和构造函数进行标注,来完成自动装配的工作,这里必须明确:@Autowired是根据类型进行自动装配的,如果需要按名称进行装配,则需要配合@Qualifier使用

  3. ACWING基础算法(三)

    双指针算法. 相向双指针,指的是在算法的一开始,两根指针分别位于数组/字符串的两端,并相向行走. ACWING 的一道裸题(不知道为啥进不去404):最长连续不重复子序列 输入 5 1 2 2 3 5 ...

  4. python刷LeetCode:9. 回文数

    难度等级:简单 题目描述: 判断一个整数是否是回文数.回文数是指正序(从左向右)和倒序(从右向左)读都是一样的整数. 示例 1: 输入: 121输出: true示例 2: 输入: -121输出: fa ...

  5. [BJDCTF2020]Mark loves cat

    0x00 知识点 GitHack读取源码 $$会导致变量覆盖漏洞 0x01解题 dirsearch扫描一下,发现/.git目录,用githack获取一下源码. <?php include 'fl ...

  6. convolution in frequency domain

    https://blog.csdn.net/myjiayan/article/details/72427995 convolution in frequency domain convolution ...

  7. 题解P4201: [NOI2008]设计路线

    发现给出了一棵树, 不是树的情况直接输出-1 考虑进行DP, 设f[i][0/1/2]为i的子树中选小于等于0/1/2条边修路的方案数, 不妨对于一个节点, 先考虑正好相等的情况, 假设当前扫到了一个 ...

  8. LINUX文件目录存放文件说明

    /bin bin是Binary的缩写.这个目录存放着最经常使用的命令. /boot这里存放的是启动Linux时使用的一些核心文件,包括一些连接文件以及镜像文件. /dev dev是Device(设备) ...

  9. jdk1.6以后 对synchronized锁做了哪些优化

    1.适应自旋锁 自旋锁:为了减少线程状态改变带来的消耗 不停地执行当前线程 2.锁消除: 不可能存在共享数据竞争的锁进行消除 3.锁粗化: 将连续的加锁 精简到只加一次锁 4.轻量级锁: 无竞争条件下 ...

  10. textField 基本属性

    _textField.frame = CGRectMake(0, 0, 200, 50); _textField.delegate = self; _textField.text = str; [_t ...