什么垃圾比赛,A题说的什么鬼楞是没看懂。就我只会BD(其实C是个大水题二分),垃圾游戏,技不如人,肝败吓疯,告辞,口胡了E就睡觉了。

B

很容易发现,存在一种方案,使得相同字母连在一起,然后发现,当字母出现种类数大于等于4时,可以奇偶性相间地连接,然后讨论种类数<=3的:种类数为1,显然直接输出;种类数为2,若两字母相邻则无解,否则直接输出;种类数为3,若三字母相邻则无解,否则按照213/231(至少一种符合条件)输出。

#include<bits/stdc++.h>
using namespace std;
const int N=;
int T,n,m,ans,sum[N],id[N];
char s[N];
int main()
{
scanf("%d",&T);
while(T--)
{
scanf("%s",s+),n=strlen(s+);
memset(sum,,sizeof sum);
memset(id,,sizeof id);
for(int i=;i<=n;i++)sum[s[i]-'a'+]++;
int num=;
for(int i=;i<=;i++)if(sum[i])id[i]=++num;
if(num==)
{
for(int i=;i<=n;i++)printf("%c",s[i]);
}
else if(num>=)
{
for(int i=;i>=;i--)
if(id[i]&)
{
for(int j=;j<=sum[i];j++)printf("%c",'a'+i-);
}
for(int i=;i>=;i--)
if(id[i]&&id[i]%==)
{
for(int j=;j<=sum[i];j++)printf("%c",'a'+i-);
}
}
else if(num==)
{
int flag=;
for(int i=;i<=;i++)if(sum[i]&&sum[i-]&&sum[i+])flag=;
if(flag)printf("No answer");
else{
for(int i=;i<=;i++)
for(int j=;j<i;j++)
for(int k=i+;k<=;k++)
if(sum[j]&&sum[i]&&sum[k])
{
for(int t=;t<=sum[i];t++)printf("%c",'a'+i-);
if(j==i-)
{
for(int t=;t<=sum[k];t++)printf("%c",'a'+k-);
for(int t=;t<=sum[j];t++)printf("%c",'a'+j-);
}
else{
for(int t=;t<=sum[j];t++)printf("%c",'a'+j-);
for(int t=;t<=sum[k];t++)printf("%c",'a'+k-);
}
}
}
}
else{
int flag=;
for(int i=;i<=;i++)if(sum[i]&&sum[i+])flag=;
if(flag)printf("No answer");
else{
for(int i=;i<=;i++)if(sum[i])
{
for(int j=;j<=sum[i];j++)printf("%c",'a'+i-);
}
}
}
puts("");
}
}

D

很容易想到一个DP,令f[i]表示以i为根的子树,从下面的节点走上来,最后一步是黑边的点数,g[i]表示全走白边的点数,于是就有f[u]=Σ(f[son]+g[son]+1),son为经过黑边的son,g[u]=Σ(g[son]+1),son为经过白边的son。然后这个东西很容易换根DP,根据黑白边讨论一下即可。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=2e5+;
int n,cnt,f[N],g[N],nf[N],ng[N],hd[N],v[N<<],nxt[N<<],w[N<<];
ll ans;
void adde(int x,int y,int z){v[++cnt]=y,nxt[cnt]=hd[x],w[cnt]=z,hd[x]=cnt;}
void dfs(int u,int fa)
{
for(int i=hd[u];i;i=nxt[i])
if(v[i]!=fa)
{
dfs(v[i],u);
if(!w[i])g[u]+=g[v[i]]+;
else f[u]+=f[v[i]]+g[v[i]]+;
}
}
void dfs2(int u,int fa)
{
ans+=nf[u]+ng[u];
for(int i=hd[u];i;i=nxt[i])
if(v[i]!=fa)
{
if(!w[i])nf[v[i]]=f[v[i]],ng[v[i]]=ng[u];
else nf[v[i]]=nf[u]-g[v[i]]+ng[u],ng[v[i]]=g[v[i]];
dfs2(v[i],u);
}
}
int main()
{
scanf("%d",&n);
for(int i=,x,y,z;i<n;i++)scanf("%d%d%d",&x,&y,&z),adde(x,y,z),adde(y,x,z);
dfs(,);
nf[]=f[],ng[]=g[],dfs2(,);
cout<<ans;
}

E

口胡了一个分治做法,一写发现,它居然过了。感觉本题比D简单。

做法大致如下:直接算很难处理,考虑分治,对于长度大于等于3的区间[l,r],考虑覆盖mid和mid+1的所有区间,可以把[l,r]分为[l,mid]和[mid+1,r]两半,然后mx[i]对于左半部分表示后缀最大值,对于右半部分表示前缀最大值,然后枚举位置计算另一端的位置是否符合题意,因为区间的max值出现在两端的mx之一,所以左右都搜一下即可统计所有答案。复杂度O(nlogn)

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=2e5+;
int n,ans,a[N],b[N],mx[N];
void solve(int l,int r)
{
if(l+>=r)return;
int mid=l+r>>;
solve(l,mid),solve(mid+,r);
mx[mid]=a[mid];for(int i=mid-;i>=l;i--)mx[i]=max(mx[i+],a[i]);
mx[mid+]=a[mid+];for(int i=mid+;i<=r;i++)mx[i]=max(mx[i-],a[i]);
for(int i=l;i<=mid;i++)
{
int pos=b[mx[i]-a[i]];
if(pos>mid&&pos<=r&&mx[pos]<mx[i])ans++;
}
for(int i=mid+;i<=r;i++)
{
int pos=b[mx[i]-a[i]];
if(pos>=l&&pos<=mid&&mx[pos]<mx[i])ans++;
}
}
int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)scanf("%d",&a[i]),b[a[i]]=i;
solve(,n);
printf("%d",ans);
}

F

很容易想到dp,令f[i][j]表示第i轮当前卡为j且游戏继续的概率,然后根据第i轮每张卡有1/(n-i+1)的概率选中,直接写个前缀和,根据题意暴力DP转移即可,代码20行。

感觉这题更简单,CF这场什么垃圾排题顺序,难怪Unrated

#include<bits/stdc++.h>
using namespace std;
const int N=,mod=;
int n,ans,a[N],s[N],inv[N],f[N][N];
int main()
{
scanf("%d",&n);
for(int i=,x;i<=n;i++)scanf("%d",&x),a[x]++;
for(int i=n;i;i--)s[i]=s[i+]+a[i];
inv[]=;for(int i=;i<=n;i++)inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;
for(int i=;i<=n;i++)f[][i]=1ll*a[i]*inv[n]%mod;
for(int i=;i<=n;i++)
for(int j=,sum=;j<=n;j++)
f[i][j]=1ll*a[j]*sum%mod,sum=(sum+1ll*f[i-][j]*inv[n-i+])%mod;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
if(a[j]>)ans=(ans+1ll*f[i][j]%mod*(a[j]-)%mod*inv[n-i])%mod;
printf("%d",ans);
}

G

看了下是个没有意思的大模拟,不想写也不会写,咕了。

感觉真实难度顺序:C<B<E<D=F<G<A

Educational Codeforces Round 64(Unrated for Div.1+Div. 2)的更多相关文章

  1. Educational Codeforces Round 64 (Rated for Div. 2)题解

    Educational Codeforces Round 64 (Rated for Div. 2)题解 题目链接 A. Inscribed Figures 水题,但是坑了很多人.需要注意以下就是正方 ...

  2. Educational Codeforces Round 64部分题解

    Educational Codeforces Round 64部分题解 A 题目大意:给定三角形(高等于低的等腰),正方形,圆,在满足其高,边长,半径最大(保证在上一个图形的内部)的前提下. 判断交点 ...

  3. Educational Codeforces Round 64 部分题解

    Educational Codeforces Round 64 部分题解 不更了不更了 CF1156D 0-1-Tree 有一棵树,边权都是0或1.定义点对\(x,y(x\neq y)\)合法当且仅当 ...

  4. Educational Codeforces Round 64(ECR64)

    Educational Codeforces Round 64 CodeForces 1156A 题意:1代表圆,2代表正三角形,3代表正方形.给一个只含1,2,3的数列a,ai+1内接在ai内,求总 ...

  5. Educational Codeforces Round 64 (Rated for Div. 2) A,B,C,D,E,F

    比赛链接: https://codeforces.com/contest/1156 A. Inscribed Figures 题意: 给出$n(2\leq n\leq 100)$个数,只含有1,2,3 ...

  6. Educational Codeforces Round 64 (Rated for Div. 2) (线段树二分)

    题目:http://codeforces.com/contest/1156/problem/E 题意:给你1-n  n个数,然后求有多少个区间[l,r] 满足    a[l]+a[r]=max([l, ...

  7. Educational Codeforces Round 64 (Rated for Div. 2)D(并查集,图)

    #include<bits/stdc++.h>using namespace std;int f[2][200007],s[2][200007];//并查集,相邻点int find_(in ...

  8. Educational Codeforces Round 64 (Div. 2)

    A.3*3讨论即可,注意正方形套圆套三角形只有6个点. #include<cstdio> #include<cstring> #include<iostream> ...

  9. Educational Codeforces Round 64 -C(二分)

    题目链接:https://codeforces.com/contest/1156/problem/C 题意:给出n个数和整形数z,定义一对数为差>=z的数,且每个数最多和一个数组成对,求最多有多 ...

随机推荐

  1. 装WIN7的一点心得

    一.为什么要装WIN7 长久以来个人的习惯,WIN10用不来,总体安装思路是:下官方版,找方法激活 二.安装镜像的来源 这个网上版本五花八门,各种系统网站,但都会有软件捆绑等行为,还有浏览器中强制捆了 ...

  2. 51Nod大数加法(两个数正负都可)

    很多大数的问题都运用模拟的思想,但是这个说一样也一样,但是难度较大,很麻烦,我自己谢写了100多行的代码,感觉很对,但就是WA.其实个人感觉C和C++没有大数类,是对人思想和算法的考验,但是有时候做不 ...

  3. centos 7.4 安装docker 19.03.6 版本。附带离线安装包

    说明: 1.此环境为未安装过docker服务的环境, 如果已经安装,则自行卸载. 2.以下环境中上传的包及离线yum源默认为/home目录下,如无特殊说明,以此目录为准 步骤一:下载docker离线安 ...

  4. 在阿里云Centos7.6中部署nginx1.16+uwsgi2.0.18+Django2.0.4

    上次在网上找了一个在阿里云Centos7.6中部署nginx1.16+uwsgi2.0.18+Django2.0.4的文档,可能是这个文档不是最新版的,安装的时候遇到了很多问题, 最后跟一个大神要了一 ...

  5. Vue 指令 v-text v-html

    有三个指令达到的效果是一样的 {{JS表达式}}  差值表达式 v-text="JS表达式" v-html="JS表达式"   //会自动解析tag js表达式 ...

  6. golang实现单链表

    package main import "fmt" type Object interface{} type Node struct { data Object next *Nod ...

  7. UVA 11019 二维匹配 AC自动机

    这个题目要求在一个大矩阵里面匹配一个小矩阵,是AC自动机的灵活应用 思路是逐行按普通AC自动机匹配,用过counts[i][j]记录一下T字符矩阵以i行j列为开头的与P等大的矩阵区域 有多少行已经匹配 ...

  8. UML-重构

    1.重构是什么? 重构是重写或重新构建已有代码的结构化和规律性方法,但不会改变已有代码的外在行为,而是采用一系列少量转换的步骤,并且每一步都结合了重新执行的测试.重构并不是全部推翻原有代码结构. 2. ...

  9. 浅谈Redis五个对象类型的底层原理

    本博客强烈推荐: Java电子书高清PDF集合免费下载 https://www.cnblogs.com/yuxiang1/p/12099324.html Redis是一种key/value型数据库,其 ...

  10. 黑马_13 Spring Boot:04.spring boot 配置文件

    13 Spring Boot: 01.spring boot 介绍&&02.spring boot 入门 04.spring boot 配置文件 05.spring boot 整合其他 ...