一、题目说明

题目是53. Maximum Subarray,求最长连续子序列最大和。难度是Easy!

二、我的解答

Easy的题目,居然没做出来。

后来看了用dp方法,其中dp[i]表示以第i个元素结尾的最大和。

dp[i] = nums[i] > nums[i]+dp[i-1] ? nums[i] : nums[i]+dp[i-1];

然后求出最大的dp即可。知道思路,实现非常简单,问题是没有往动态规划上面去想。

#include<iostream>
#include<vector> using namespace std;
class Solution{
public:
int maxSubArray(vector<int>& nums) {
int len=nums.size();
vector<int> dp;
dp.resize(len);
//以第i个元素结尾的最大和
dp[0] = nums[0];
int max = dp[0];
for(int i=1;i<len;i++){
dp[i] = nums[i] > nums[i]+dp[i-1] ? nums[i] : nums[i]+dp[i-1];
max = max > dp[i] ? max : dp[i];
} return max;
}
};
int main(){
Solution s; vector<int> m;
m = {-2,1,-3,4,-1,2,1,-5,4};
cout<<(6==s.maxSubArray(m))<<"\n"; m = {-2,1,-3};
cout<<(1==s.maxSubArray(m))<<"\n"; m = {1};
cout<<(1==s.maxSubArray(m))<<"\n"; m = {-2,-1};
cout<<(-1==s.maxSubArray(m))<<"\n";
return 0;
}

性能居然还不错,空间复杂的可以优化,dp复用nums,还是算了,可读性不好:

Runtime: 4 ms, faster than 98.55% of C++ online submissions for Maximum Subarray.
Memory Usage: 9.4 MB, less than 17.65% of C++ online submissions for Maximum Subarray.

三、优化

题目说让用分治算法,分而治之。我想想,应该是类似“二分查找”。不会,看了大神的实现:

class Solution{
public:
//divide & conquer approach
int maxSubArray(vector<int>& nums) {
return maxSubArrayPart(nums,0,nums.size()-1);
}
private:
int maxSubArrayPart(vector<int>& nums,int left,int right){
if(left==right){
return nums[left];
}
int mid = (left+right) / 2;
return max(maxSubArrayPart(nums,left,mid),
max(maxSubArrayPart(nums,mid+1,right),maxSubArrayAll(nums,left,mid,right)));
} //左右两边求和
int maxSubArrayAll(vector<int>& nums,int left,int mid,int right){
int leftSum = INT_MIN;
int sum=0;
for(int i=mid;i>=left;i--){
sum += nums[i];
if(sum>leftSum) leftSum=sum;
} sum=0;
int rightSum= INT_MIN;
for(int i=mid+1;i<=right;i++){
sum += nums[i];
if(sum>rightSum) rightSum=sum;
} return leftSum+rightSum;
}
};

性能:

Runtime: 8 ms, faster than 74.25% of C++ online submissions for Maximum Subarray.
Memory Usage: 9.4 MB, less than 33.33% of C++ online submissions for Maximum Subarray.

刷题53. Maximum Subarray的更多相关文章

  1. LeetCode练题——53. Maximum Subarray

    1.题目 53. Maximum Subarray——Easy Given an integer array nums, find the contiguous subarray (containin ...

  2. go语言刷leetcode - 53 Maximum Subarray

    package main import ( "fmt" "math" ) func maxSubArray(nums []int) int { var larg ...

  3. 41. leetcode 53. Maximum Subarray

    53. Maximum Subarray Find the contiguous subarray within an array (containing at least one number) w ...

  4. Leetcode#53.Maximum Subarray(最大子序和)

    题目描述 给定一个序列(至少含有 1 个数),从该序列中寻找一个连续的子序列,使得子序列的和最大. 例如,给定序列 [-2,1,-3,4,-1,2,1,-5,4], 连续子序列 [4,-1,2,1] ...

  5. 小旭讲解 LeetCode 53. Maximum Subarray 动态规划 分治策略

    原题 Given an integer array nums, find the contiguous subarray (containing at least one number) which ...

  6. Leetcode之53. Maximum Subarray Easy

    Leetcode 53 Maximum Subarray Easyhttps://leetcode.com/problems/maximum-subarray/Given an integer arr ...

  7. [Leetcode][Python]53: Maximum Subarray

    # -*- coding: utf8 -*-'''__author__ = 'dabay.wang@gmail.com' 53: Maximum Subarrayhttps://leetcode.co ...

  8. 53. Maximum Subarray【leetcode】

    53. Maximum Subarray[leetcode] Find the contiguous subarray within an array (containing at least one ...

  9. [array] leetcode - 53. Maximum Subarray - Easy

    leetcode - 53. Maximum Subarray - Easy descrition Find the contiguous subarray within an array (cont ...

随机推荐

  1. POJ 2104 主席树模板题

    #include <iostream> #include <cstdio> #include <algorithm> int const maxn = 200010 ...

  2. js 中一些重要的字符串方法

    String 对象方法 方法 描述 charAt() 返回在指定位置的字符. charCodeAt() 返回在指定的位置的字符的 Unicode 编码. concat() 连接两个或更多字符串,并返回 ...

  3. PaperReading20200227

    CanChen ggchen@mail.ustc.edu.cn   Neural Predictor for Neural Architecture Search Motivation: Curren ...

  4. 牛客挑战赛36 G Nim游戏(分治FWT)

    https://ac.nowcoder.com/acm/contest/3782/G 题解: 分治FWT裸题. 每个都相当于\((1+b[i]x^{a[i]})\),求这玩意的异或卷积. 先把a[i] ...

  5. IIS 应用程序池回收(代码实现)

    回收 public void StartStopRecycleApp(string appName = "项目DLL名称", string method = "Recyc ...

  6. dp - 活动选择问题

    算法目前存在问题,待解决.. 活动选择问题是一类任务调度的问题,目标是选出一个最大的互相兼容的活动集合.例如:学校教室的安排问题,几个班级需要在同一天使用同一间教室,但其中一些班级的使用时间产生冲突, ...

  7. 获取Webshell方法总结

    一.CMS获取Webshell方法 搜索CMS网站程序名称 eg:phpcms拿webshell.wordpress后台拿webshell 二.非CMS获取Webshell方法 2.1数据库备份获取W ...

  8. get your sqlserver database back by using EMC NW NMM

    Dear all Yes ~ We can backup our sqlserver by EMC NW NMM. That is true and NW is a very very powerfu ...

  9. 143、Java内部类之访问方法中定义的参数或变量

    01.代码如下: package TIANPAN; class Outer { // 外部类 private String msg = "Hello World !"; publi ...

  10. CSS - 插入图片img和背景图片

    1. img插入图片,用的最多,比如产品展示类 .section img { width: 200px;/* 插入图片更改大小 width 和 height */ height: 210px; mar ...