刷题53. Maximum Subarray
一、题目说明
题目是53. Maximum Subarray,求最长连续子序列最大和。难度是Easy!
二、我的解答
Easy的题目,居然没做出来。
后来看了用dp方法,其中dp[i]表示以第i个元素结尾的最大和。
dp[i] = nums[i] > nums[i]+dp[i-1] ? nums[i] : nums[i]+dp[i-1];
然后求出最大的dp即可。知道思路,实现非常简单,问题是没有往动态规划上面去想。
#include<iostream>
#include<vector>
using namespace std;
class Solution{
public:
int maxSubArray(vector<int>& nums) {
int len=nums.size();
vector<int> dp;
dp.resize(len);
//以第i个元素结尾的最大和
dp[0] = nums[0];
int max = dp[0];
for(int i=1;i<len;i++){
dp[i] = nums[i] > nums[i]+dp[i-1] ? nums[i] : nums[i]+dp[i-1];
max = max > dp[i] ? max : dp[i];
}
return max;
}
};
int main(){
Solution s;
vector<int> m;
m = {-2,1,-3,4,-1,2,1,-5,4};
cout<<(6==s.maxSubArray(m))<<"\n";
m = {-2,1,-3};
cout<<(1==s.maxSubArray(m))<<"\n";
m = {1};
cout<<(1==s.maxSubArray(m))<<"\n";
m = {-2,-1};
cout<<(-1==s.maxSubArray(m))<<"\n";
return 0;
}
性能居然还不错,空间复杂的可以优化,dp复用nums,还是算了,可读性不好:
Runtime: 4 ms, faster than 98.55% of C++ online submissions for Maximum Subarray.
Memory Usage: 9.4 MB, less than 17.65% of C++ online submissions for Maximum Subarray.
三、优化
题目说让用分治算法,分而治之。我想想,应该是类似“二分查找”。不会,看了大神的实现:
class Solution{
public:
//divide & conquer approach
int maxSubArray(vector<int>& nums) {
return maxSubArrayPart(nums,0,nums.size()-1);
}
private:
int maxSubArrayPart(vector<int>& nums,int left,int right){
if(left==right){
return nums[left];
}
int mid = (left+right) / 2;
return max(maxSubArrayPart(nums,left,mid),
max(maxSubArrayPart(nums,mid+1,right),maxSubArrayAll(nums,left,mid,right)));
}
//左右两边求和
int maxSubArrayAll(vector<int>& nums,int left,int mid,int right){
int leftSum = INT_MIN;
int sum=0;
for(int i=mid;i>=left;i--){
sum += nums[i];
if(sum>leftSum) leftSum=sum;
}
sum=0;
int rightSum= INT_MIN;
for(int i=mid+1;i<=right;i++){
sum += nums[i];
if(sum>rightSum) rightSum=sum;
}
return leftSum+rightSum;
}
};
性能:
Runtime: 8 ms, faster than 74.25% of C++ online submissions for Maximum Subarray.
Memory Usage: 9.4 MB, less than 33.33% of C++ online submissions for Maximum Subarray.
刷题53. Maximum Subarray的更多相关文章
- LeetCode练题——53. Maximum Subarray
1.题目 53. Maximum Subarray——Easy Given an integer array nums, find the contiguous subarray (containin ...
- go语言刷leetcode - 53 Maximum Subarray
package main import ( "fmt" "math" ) func maxSubArray(nums []int) int { var larg ...
- 41. leetcode 53. Maximum Subarray
53. Maximum Subarray Find the contiguous subarray within an array (containing at least one number) w ...
- Leetcode#53.Maximum Subarray(最大子序和)
题目描述 给定一个序列(至少含有 1 个数),从该序列中寻找一个连续的子序列,使得子序列的和最大. 例如,给定序列 [-2,1,-3,4,-1,2,1,-5,4], 连续子序列 [4,-1,2,1] ...
- 小旭讲解 LeetCode 53. Maximum Subarray 动态规划 分治策略
原题 Given an integer array nums, find the contiguous subarray (containing at least one number) which ...
- Leetcode之53. Maximum Subarray Easy
Leetcode 53 Maximum Subarray Easyhttps://leetcode.com/problems/maximum-subarray/Given an integer arr ...
- [Leetcode][Python]53: Maximum Subarray
# -*- coding: utf8 -*-'''__author__ = 'dabay.wang@gmail.com' 53: Maximum Subarrayhttps://leetcode.co ...
- 53. Maximum Subarray【leetcode】
53. Maximum Subarray[leetcode] Find the contiguous subarray within an array (containing at least one ...
- [array] leetcode - 53. Maximum Subarray - Easy
leetcode - 53. Maximum Subarray - Easy descrition Find the contiguous subarray within an array (cont ...
随机推荐
- POJ 2104 主席树模板题
#include <iostream> #include <cstdio> #include <algorithm> int const maxn = 200010 ...
- js 中一些重要的字符串方法
String 对象方法 方法 描述 charAt() 返回在指定位置的字符. charCodeAt() 返回在指定的位置的字符的 Unicode 编码. concat() 连接两个或更多字符串,并返回 ...
- PaperReading20200227
CanChen ggchen@mail.ustc.edu.cn Neural Predictor for Neural Architecture Search Motivation: Curren ...
- 牛客挑战赛36 G Nim游戏(分治FWT)
https://ac.nowcoder.com/acm/contest/3782/G 题解: 分治FWT裸题. 每个都相当于\((1+b[i]x^{a[i]})\),求这玩意的异或卷积. 先把a[i] ...
- IIS 应用程序池回收(代码实现)
回收 public void StartStopRecycleApp(string appName = "项目DLL名称", string method = "Recyc ...
- dp - 活动选择问题
算法目前存在问题,待解决.. 活动选择问题是一类任务调度的问题,目标是选出一个最大的互相兼容的活动集合.例如:学校教室的安排问题,几个班级需要在同一天使用同一间教室,但其中一些班级的使用时间产生冲突, ...
- 获取Webshell方法总结
一.CMS获取Webshell方法 搜索CMS网站程序名称 eg:phpcms拿webshell.wordpress后台拿webshell 二.非CMS获取Webshell方法 2.1数据库备份获取W ...
- get your sqlserver database back by using EMC NW NMM
Dear all Yes ~ We can backup our sqlserver by EMC NW NMM. That is true and NW is a very very powerfu ...
- 143、Java内部类之访问方法中定义的参数或变量
01.代码如下: package TIANPAN; class Outer { // 外部类 private String msg = "Hello World !"; publi ...
- CSS - 插入图片img和背景图片
1. img插入图片,用的最多,比如产品展示类 .section img { width: 200px;/* 插入图片更改大小 width 和 height */ height: 210px; mar ...