【转】【关于 A^x = A^(x % Phi(C) + Phi(C)) (mod C) 的若干证明】【指数循环节】
【关于 A^x = A^(x % Phi(C) + Phi(C)) (mod C) 的若干证明】【指数循环节】
原文地址:http://hi.baidu.com/aekdycoin/item/e493adc9a7c0870bad092fd9
曾经看过如下一个公式:
以上的公式如果第一次见到,难免有不少疑惑:
为什么可以这么写?限制条件为什么是x >= Phi(C),这个公式为什么正确?
今天突发奇想,在纸上YY以后得到了以下证明(个人证明,如果有问题欢迎提出)
定理 1:
对于一个数对(A,C) 必然存在一个最小的正整数 L,满足
其中SPOS 是一个大于等于0的整数(下面具体介绍)
我们称L 为(A,C) 的最小循环节长度
证明:
根据鸽巢原理,得到在x >= C 后必然出现循环,从而定理得证.
定理 2:
对于数对 (A,C) 下面的公式必然成立
其中 k >= 0
既L 的任意倍数均为一个新的循环节长度.
证明:
根据定理1,不难得证.
定理 3:
对于数对 (A,C) 必然存在 一个最大的SPOS >=0 ,满足
(1) 若x属于区间 [0,SPOS -1] 内,得到的一个剩余系的长度为SPOS;
(2) 该剩余系和x属于[SPOS,+oo]的剩余系的交集为空!
证明:
对于一个SPOS,由于[0,SPOS-1]内不存在循环,所以x属于[0,SPOS-1]内得到的值是唯一的.
而第二点的证明也不难,因为如果不为空,那么必然可以缩小SPOS的值.
定理 4:
对于数对 (A,C) 若 (A,C) == 1,那么 L | Phi(C)
证明:
显然可以由欧拉公式,得到
A^Phi(C) = 1 (mod C)
而A^0 = 1 (mod C),于是出现了循环
由定理2,该定理得证.
定理5:
对于数对 (A,C) 若 A|C
那么有
SPOS >= CNT
其中CNT为满足 A^CNT | C的最大的正整数
下面分2个情况
(1) A^CNT == C
果断显然成立
(2) A^CNT * B = C
于是我们假设对于[0,CNT] 内存在某个数i,有
A^i = A^x (mod C)
而由于x > CNT (因为[0,CNT]内不存在循环)
所以
A^CNT * A^(x - CNT) = A^i (mod A^CNT * B)
显然如果 i < CNT
那么是不可能有解的
因为(A^CNT, A^CNT * B) | A^i 显然不成立
于是Spos >= CNT 得证
定理 6:
对于一个数对 (A,C) 若存在
那么有 L | M
根据定理1,2 不难得到.
好了,上面写了那么多,是为了介绍 循环节的基本定理
下面开始正题,开始公式的证明
我们对于A 进行分解,得到素因子集合
下面我们把素因子分为2类
(1) (Pi,C) == 1
(2) (Pi,C) != 1
对于第一类情况,我们容易由定理4知道对于每一个 Pi,得到了Li ( 数对 (Pi,C) 的最小循环节长) 必然是 Phi(C) 的因子
对于第二类情况,由定理5,”消去 因子”,转化为第一类的情况.得到了 这类的素因子Pi 的Li 依然为Phi(C) 的因子
@2011-01-11 对于第二类情况的更新
由循环定义得到
(Pi^ci)^x = (Pi^ci)^(x + Li) (mod C) (x >= spos)
那么我们假设C = Pi^CNT * B, 其中 (B, Pi) = 1
那么
(Pi^ci)^x = (Pi^ci)^(x + Li) (mod Pi^CNT * B)
同时消去Pi因子,最终可以得到:
[Pi^a] * [Pi^ci]^b = [Pi^a] * [Pi^ci]^b * [Pi^ (ci * Li)] (mod B)
(Pi^a, B) = 1,逆元存在,2边同时乘上 Pi^a的逆元
[Pi^ci]^b = [Pi^ci]^b * [Pi^ (ci * Li)] (mod B)
===>
[Pi^ci] ^b = [Pi^ci] ^ (b + Li) (mod B)
Li 为Phi(B)的因子,B为C的因子,既
Li | Phi(B), B| C
下面我们构造所有素因子的循环,既求他们的LCM,那由于定理6不难知道,(A,C) 的最小循环节长 L | LCM(L1,L2…LK)
而Li |Phi(C)
所以 L | Phi(C)
之后由定理1,2 公式得证.
推荐题目:
http://acm.fzu.edu.cn/problem.php?pid=1759
Problem 1759 Super A^B mod C 直接运用公式
http://acm.hdu.edu.cn/showproblem.php?pid=3221
2009年shanghai B,得到DP以后利用公式
http://acm.hdu.edu.cn/showproblem.php?pid=2837
Calculation 递归,注意细节
PS. 标程在某个细节处理错误,可是数据是对的.
【转】【关于 A^x = A^(x % Phi(C) + Phi(C)) (mod C) 的若干证明】【指数循环节】的更多相关文章
- CH BR13数学(啥?-a^b≡a^b mod phi(p)+phi(p)(mod p)(b>=phi(p))公式)
啥? Beta Round #13 (数学专场) 背景 有人写了一个RSA加密给我玩. 描述 我赌5毛前面两题的内容也就开头几句话平时会用到. 还是做点具体的东西吧. 求c^d Mod N 输入格式 ...
- P4139 上帝与集合的正确用法[欧拉定理]
题目描述 求 \[ 2^{2^{2\cdots}} ~mod ~p \] 简单题,指数循环节. 由于当\(b>=\psi(p)\)时,有 \[ a^b=a^{b ~mod~\psi(p)+\ps ...
- UVA 10692 Huge Mods(指数循环节)
指数循环节,由于a ^x = a ^(x % m + phi(m)) (mod m)仅在x >= phi(m)时成立,故应注意要判断 //by:Gavin http://www.cnblogs. ...
- hdu 2837 Calculation 指数循环节套路题
Calculation Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total ...
- FZU 1759 Super A^B mod C 指数循环节
Problem 1759 Super A^B mod C Time Limit: 1000 mSec Memory Limit : 32768 KB Problem Description G ...
- hdu 5895 Mathematician QSC 指数循环节+矩阵快速幂
Mathematician QSC Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Othe ...
- 牛客OI测试赛 F 子序列 组合数学 欧拉降幂公式模板
链接:https://www.nowcoder.com/acm/contest/181/F来源:牛客网 题目描述 给出一个长度为n的序列,你需要计算出所有长度为k的子序列中,除最大最小数之外所有数的乘 ...
- 【BZOJ 2818】Gcd - 筛法求素数&phi()
题目描述 给定整数,求且为素数的数对有多少对. 分析 首先筛出所有的素数. 我们考虑枚举素数p,统计满足的个数,等价于统计的个数,即统计以内满足互质的有序数对个数. 不难发现,也就是说,我们只要预处理 ...
- 既约分数-phi
Description 小明正在学习分数这一章,他想知道对于一个真分数b/a而言,当分母a在[2,N]之间时,存在多少个既约分数,例如当N=4时,有以下几个1/2,1/3,1/4,2/3,3/4这五个 ...
随机推荐
- thinkcmf2.2 火狐浏览器图片上传以及谷歌图片上传打开稍慢
对目录中 admin/themes/simplebootx/asset/plupload.html 文件 进行更改如下图:
- UML-领域模型-例子与总结
1.pos处理销售,示例 2.结论 1).每次迭代中,画概念模型只需要30分钟左右.避免瀑布思维. 2).在细化阶段开始构建概念模型
- 浙江省赛 ZOJ - 4033
题意: 第一行给出T代表有几个测试样例, 第二行给出n代表有几个人, 第三行给出一个由0和1组成的字符串,0代表女生,1代表男生. 并且第i个人有i个宝石. 现在要把这些人分为四组,G1 G2 两组是 ...
- 控制台输出<迷你DVD管理>
使用顺序.选择.循环.跳转语句 数组 功能实现菜单显示和切换 输入的数字不符合要求直接退出程序 用户可以选择新增.查看. 删除.借出.归还.退出 思路分析 使用switch语句实现菜单选择 使用do- ...
- C#chart图表的应用
在图表中,x轴代表类别,y轴代表数值(好比类与他们的属性) 这是数据库中的数据,下面我们选前5辆车,在图表中显示他们的名字,油耗,功率,价格 创建查询数据的类 class CarDA { public ...
- Codeforces Round #530 (Div. 2)F Cookies (树形dp+线段树)
题:https://codeforces.com/contest/1099/problem/F 题意:给定一个树,每个节点有俩个信息x和t,分别表示这个节点上的饼干个数和先手吃掉这个节点上一个饼干的的 ...
- python实现XML解析的三种方法
python实现XML解析的三种方法 三种方法:一是xml.dom.*模块,它是W3C DOM API的实现,若需要处理DOM API则该模块很适合:二是xml.sax.*模块,它是SAX API的实 ...
- python+selenium自动化--参数化(paramunittest)
unnittest的参数化模块-paramunittest paramunittest是unittest实现参数化的一个专门的模块,可以传入多组参数,自动生成多个用例 两种用法 import unit ...
- 通过javascri实现输入框只能输入数字
输入框只能输入数字 <input type="text" onkeyup="value=value.replace(/[^\d]/g,'');"> ...
- 892B. Wrath#愤怒的连环杀人事件(cin/cout的加速)
题目出处:http://codeforces.com/problemset/problem/892/B 题目大意:一队人同时举刀捅死前面一些人后还活着几个 #include<iostream&g ...