【导读】今天,谷歌发布了2019最新版学术指标,对收录的会议和期刊的影响力进行排名。AI类的多个顶会进入榜单Top 100,CVPR更是进入前10,而何恺明的“深度残差网络”单篇引用次数高达25256次,引用量最高!

今天,谷歌正式发布了2019年版的学术指标(Scholar Metrics)

本次发布涵盖2014-2018年发表的文章,并包括了截至2019年7月在谷歌学术中被索引的所有文章的引用 。

最新版的谷歌学术指标有以下亮点:

  • 两大自然科学顶刊Nature和Science分别排名第一和第三

  • 计算机视觉顶会CVPR首次进入综合榜单Top 10

  • 一共有六个人工智能类顶会进入综合榜单Top 100

  • 多篇人工智能论文出现在Nature的高引论文中;

  • 何恺明的“深度残差学习”论文是最近5年CV类引用次数最多的论文,被引25256次

谷歌学术指标为作者提供了一种简便的方法,让学者们可以快速评估学术出版物最近文章的影响力。

学术指标的收录包括遵循谷歌学术收录指南的网络期刊,并选择了工程和计算机科学的主要会议。2014-2018年间论文少于100篇的出版物,或2014-2018年间未被引用的出版物没有被收录在内。

在谷歌的官方网站上,你可以用特定的类型关键词进行搜索,比如 Ceramic Engineering、 High Energy & Nuclear Physics 或者 Film ;或者更宽泛的领域,比如 Engineering & Computer Science 或者 Humanities, Literature & Arts 。

在网站上,你可以看到根据 5 年高引用(h5指数)和 h5中位数指标排名的前 20 出版物。你也可以看到不同语种排名前 100 的出版物,比如中文、西班牙语和葡萄牙语。每一个出版物,你可以点击 h5-index 查看该出版物被引用最多的论文。

学术指标包括超出按类别和按语言列出的大量出版物。你可以通过在搜索框中输入关键词来找到这些内容,例如[security]、[soil]、[medicina]。

综合榜单Top 20:CVPR首次进入前10名,NeurIPS第27

谷歌学术把英文类出版物分为以下几大类:

  • 商业、经济和管理

  • 化学和材料科学

  • 工程和计算机科学

  • 健康和医学科学

  • 人文、文学和艺术

  • 生命科学和地球科学

  • 物理和数学

  • 社会科学

综合排名Top 20

首先来看看综合排名。

英文类出版物,网站列出了 TOP100 的名单,其中 Nature 排名第一,H5 指数 368,H5 中位数 546。

另一科学顶刊Science排名第三,H5指数338,H5中位数511。

特别值得注意的是,计算机视觉的顶会CVPR排名进入了Top 10。去年CVPR的排名是第20,一跃进步了10名。

此外,AI 领域另一个备受关注的会议 NeurIPS,也在综合排名中位列第 27(去年是第54)。

其他人工智能类会议,ICLR排名第42,ECCV排名第56,ICML排名第59,ICCV排名第71

此外,IEEE系期刊中《IEEE模式分析与机器智能学报》排名第76,《IEEE工业电子学报》排名第81,《IEEE电力电子学报》排名第98。

再来看单篇论文的被引次数:

其中,Nature杂志今年来被引用次数最高的Top 5论文中,人工智能相关论文占了3篇,分别是LeCun、Bengio和Hinton2015年发表的“Deep Learning”综述论文,DeepMind的“Q-network”深度强化学习论文,以及同样来自DeepMind的“通过深度神经网络和树搜索掌握围棋游戏”论文。

工程与计算机领域Top 20

工程与计算机类的Top 20

工程和计算机科学类目下分为 56 个子项目,其中包括人工智能、计算机语言学、计算机视觉与模式识别、人机交互、Robotics等。下文将对这些领域进行详细介绍。

人工智能 TOP 20,多个顶会上榜

人工智能Top 20

一眼看去,人工智能分类(不包含CV、NLP等子领域)的TOP 20有多个是顶会,包括前面提到进入综合榜单TOP 100的NeurIPS、ICLR和ICML

此外,AAAI虽然没有进入总榜Top 100,但在人工智能类排名第7。

让我们来发表在人工智能类会议中被引用次数最高的论文:

1. Adam: A Method for Stochastic Optimization.

DP Kingma, J Ba

ICLR

引用次数:25240

2. Very Deep Convolutional Networks for Large-Scale Image Recognition.

K Simonyan, A Zisserman

ICLR

引用次数:24554

3. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift.

S Ioffe, C Szegedy

ICML, 448-456

引用次数:11293

4. Faster R-CNN: towards real-time object detection with region proposal networks 

S Ren, K He, R Girshick, J Sun Proceedings of the 28th International Conference on Neural Information …

引用次数:10517

5. Generative adversarial nets

IJ Goodfellow, J Pouget-Abadie, M Mirza, B Xu, D Warde-Farley, S Ozair, ...

Proceedings of the 27th International Conference on Neural Information …

引用次数:10175

可以看到,Adam随机优化方法以25240次引用排名第一,何恺明大神的Faster R-CNN以10517次引用进入前5,比Goodfellow的生成对抗网络论文略高。

计算机视觉与模式识别类 TOP 20,何恺明大神单篇引用最高

在计算机视觉与模式识别领域,三大视觉顶会CVPR、ECCV和ICCV分列前三

第4和第5则分别是IEEE系的两本会刊:《IEEE模式分析与机器智能学报》和《IEEE图像处理学报》,两者h5指数均超过100.

接下来是计算机视觉与模式识别类引用最高的论文:

1. Deep Residual Learning for Image Recognition

K He, X Zhang, S Ren, J Sun

Proceedings of the IEEE Conference on Computer Vision and Pattern …

引用次数:25256

2. Going Deeper With Convolutions

C Szegedy, W Liu, Y Jia, P Sermanet, S Reed, D Anguelov, D Erhan, ...

Proceedings of the IEEE Conference on Computer Vision and Pattern …

引用次数:14424

3. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

S Ren, K He, R Girshick, J Sun

IEEE Transactions on Pattern Analysis and Machine Intelligence 39 (6), 1137-1149

引用次数:10517

4. Fully Convolutional Networks for Semantic Segmentation

J Long, E Shelhamer, T Darrell

Proceedings of the IEEE Conference on Computer Vision and Pattern …

引用次数:10153

5. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation

R Girshick, J Donahue, T Darrell, J Malik

Proceedings of the IEEE Conference on Computer Vision and Pattern …

引用次数:8960

这个类别中,何恺明的“深度残差网络”以25256次引用排名第一!(由于被IEEE计算机视觉与模式识别论文集收录,Faster R-CNN出现了两次。)

计算机语言学 TOP20,三大NLP顶会分列前三

在自然语言处理(Google scholar 中的分类是 Computational Linguistics)领域,不出意外,排名前三的是三大NLP顶会:ACL、EMNLP和NAACL

接下来是计算语言学类引用最高的论文:

1. Glove: Global Vectors for Word Representation

J Pennington, R Socher, C Manning

Proceedings of the 2014 Conference on Empirical Methods in Natural Language …

引用次数:8358

2. The Stanford CoreNLP Natural Language Processing Toolkit.

CD Manning, M Surdeanu, J Bauer, JR Finkel, S Bethard, D McClosky

ACL (System Demonstrations), 55-60

引用次数:5618

3. Convolutional Neural Networks for Sentence Classification

Y Kim

Proceedings of the 2014 Conference on Empirical Methods in Natural Language …

引用次数:4551

4. Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation

K Cho, B van Merrienboer, C Gulcehre, D Bahdanau, F Bougares, ...

Proceedings of the 2014 Conference on Empirical Methods in Natural Language …

引用次数:3629

5. A Convolutional Neural Network for Modelling Sentences

N Kalchbrenner, E Grefenstette, P Blunsom

Proceedings of the 52nd Annual Meeting of the Association for Computational …

引用次数:1838

人机交互和机器人学TOP 20

最后,我们分别看一下人机交互和机器人学领域的Top 20顶刊/顶会:

人机交互类Top 20

机器人类Top 20

h5 指数是指在过去整整 5 年中所发表文章的 h 指数。h 指在 2014-2018 年间发表的 h 篇文章每篇至少都被引用过 h 次的最大值。

出版物的 h5 中位数,是指出版物的 h5 指数所涵盖的所有文章获得的引用次数的中位值。

想了解更多高影响力期刊和论文,请点击阅读原文到官网查看。

欢迎关注磐创博客资源汇总站:

http://docs.panchuang.net/

欢迎关注PyTorch官方中文教程站:

http://pytorch.panchuang.net/

谷歌2019 学术指标发榜:CVPR首次进入Top 10,何恺明论文引用最高!的更多相关文章

  1. 2019最好用的自动化测试工具Top 10,果断收藏!

    经常有人在公众号留言或是后台问我,做自动化测试用哪个工具好,或是学哪门编程语言好呢? 这个时候总是无奈的说: 你应该学习Python 或是Java. 你应该掌握Selenium. 又或者你需要学会jm ...

  2. 2019建模美赛B题(派送无人机)M奖论文

    昨天上午出了建模美赛的结果,我们小组获得的是M奖,感觉挺开心的.我一直觉得拿O奖那种是个概率事件,需要天时地利人和的各种因素都合适才行,所以看到自己是M奖,感觉自己的能力已经得到了认可就很满意了.今天 ...

  3. Python语言系列-10-数据库

    MySQL 基础环境准备 readme.txt 作者:Alnk(李成果) 版本:v1.0 安装mysql数据库 略 创建student库 # mysql> create database stu ...

  4. 自动驾驶研究回顾:CVPR 2019摘要

    我们相信开发自动驾驶技术是我们这个时代最大的工程挑战之一,行业和研究团体之间的合作将扮演重要角色.由于这个原因,我们一直在通过参加学术会议,以及最近推出的自动驾驶数据集和基于语义地图的3D对象检测的K ...

  5. 谷歌(Google)学术镜像,谷歌镜像

    谷歌(Google)学术镜像,谷歌镜像 2019-09-03 15:32:26 Hinton-wu 阅读数 6743 文章标签: 谷歌google学术镜像 更多 分类专栏: 其他   版权声明:本文为 ...

  6. 使用Selenium从IEEE与谷歌学术批量爬取BibTex文献引用

    搞科研的小伙伴总是会被期刊严苛的引用文献格式搞的很头疼.虽然常用的文献软件可以一键导出BibTex,但由于很多论文在投稿之前都会先发上Arxiv占坑,软件就很可能会把文献引出为来自Arxiv.我用的是 ...

  7. 清华大学&中国人工智能学会:2019人工智能发展报告

    2019年11月30日,2019中国人工智能产业年会重磅发布<2019人工智能发展报告>(Report of Artificial Intelligence Development 201 ...

  8. 深度学习论文TOP10,2019一季度研究进展大盘点

    9012年已经悄悄过去了1/3. 过去的100多天里,在深度学习领域,每天都有大量的新论文产生.所以深度学习研究在2019年开了怎样一个头呢? Open Data Science对第一季度的深度学习研 ...

  9. 第四届CCF大数据学术会议征文通知

    第四届CCF大数据学术会议征文通知 2016年10月,兰州 近几年,大数据是各界高度关注积极布局的热点方向.2015年8月,国务院发表<促进大数据发展行动纲要>,正式将大数据提升为国家战略 ...

随机推荐

  1. Python——5函数

    */ * Copyright (c) 2016,烟台大学计算机与控制工程学院 * All rights reserved. * 文件名:text.cpp * 作者:常轩 * 微信公众号:Worldhe ...

  2. Pycharm+PyQt5开发环境配置

    一.安装Python开发环境 python官网下载地址:https://www.python.org/downloads/ 注:千万不要使用最新测试版,很有可能第三方库不支持 笔者目前使用的版本是3. ...

  3. 7-2 jmu-python-九九乘法表(矩形) (10 分)

    本题目要求输出如下图所示的九九乘法表 注:乘积要求做格式控制,占4个位置的宽度 输入样例: 无 输出样例: 1*1=1 1*2=2 1*3=3 1*4=4 1*5=5 1*6=6 1*7=7 1*8= ...

  4. 《数字信号处理》课程实验2 – FIR数字滤波器设计

    一.FIR数字滤波器设计原理  本实验采用窗函数法设计FIR数字低通滤波器.我们希望设计的滤波器系统函数如下: \(H_{d}\left( e^{jw} \right) = \left\{ \begi ...

  5. ES6 常用知识点总结

    ES6常用知识总结 之前总结了es5中js的一些知识点.这段时间看了石川blue老师讲解的es6课程,结合阮一峰老师的es6教程,随手做了一些笔记和总结分享给大家.内容还是es6主要的知识点,基本没有 ...

  6. 每个 JavaScript 工程师都应当知道的 10 个面试题

    1. 能说出来两种对于 JavaScript 工程师很重要的编程范式么? JavaScript 是一门多范式(multi-paradigm)的编程语言,它既支持命令式(imperative)/面向过程 ...

  7. Linux学习5-安装mysql

    前言 今天我们来学习一下如何在Linux下安装mysql 一:准备安装包 可以从http://www.mysql.com/downloads/官方网站下载到最新版本,本次安装的版本是mysql-5.7 ...

  8. A. New Building for SIS Codeforce

    You are looking at the floor plan of the Summer Informatics School's new building. You were tasked w ...

  9. cocoapods安装以及ZXingObjC的安装

    因为项目要用到第三方包ZXingObjC,需要安装cocoapods.下面是我曲折的安装过程. 1.直接在终端内输入: sudo gem install cocoapods 我直接安装成功. 由于国内 ...

  10. 2019-2020-3 20174318张致豪《网络对抗技术》Exp2 后门原理与实践

    Exp2 后门原理与实践 前期准备 一.实验目标与基础知识 1.1 实践目标 使用netcat获取主机操作Shell,cron启动 使用socat获取主机操作Shell,任务计划启动 使用MSF  m ...