Sigmoid 函数的优缺点是什么

优点:

  • 输出范围优先,可以将任意范围的输出映射到 (0, 1) 范围内,在输出层可以用于表示二分类的输出概率
  • 易于求导

缺点:

  • Sigmoid 函数容易饱和,且梯度范围为 (0, 0.25] ,在反向传播中容易导致梯度消失问题。

ReLU的优缺点

优点

  • ReLU的非饱和性可以提供相对宽的激活边界。
  • 梯度只有 0, 1 两个变量,有效地解决梯度消失的问题。
  • ReLU的单侧抑制提供了网络的稀疏表达能力。

缺点

  • 训练过程中会导致神经元死亡的问题。在训练时,如果参数在一次不恰当的更新后,第一个隐藏层中的某个ReLU神经元在所有的训练数据上都不能被激活。那么,这个神经元自身参数的梯度永远都会是 0,在以后的训练过程中永远不能被更新。这种现象称为死亡 ReLU 问题 (Dying ReLU Problem)

什么是交叉熵

  • 交叉熵刻画的是两个概率分布之间的距离,描述了真实分布和预测分布之间的差异性
  • 交叉熵的公式:\(H(p, q) = -\sum_x p(x) log\ q(x)\),其中,x为一个样本中每一个类别的概率

为什么分类问题的损失函数为交叉熵而不能是 MSE?

从建模上来看:

  • MSE 是假设数据符合高斯分布时,概率分布的负条件对数似然。表示两个向量之间的欧几里得距离
  • CE是假设模型分布为多项式分布时,概率分布的负条件对数似然。表示真实分布和预测分布之间的差异性

从梯度上来看:

  • MSE 的梯度 \(\frac{\partial L}{\partial \hat y_i} = 2(\hat y_i - y_i)\)
  • CE 的梯度 \(\frac{\partial L}{\partial \hat y_i} = \frac{y_i}{\hat y_i}\)

MSE 在优化后期侧残差会趋于零,非常小,导致优化速度减慢。而 CE 在优化后期正确类别的分量是趋于 1 的,而非正确类别的分量恒为 0,优化速度更快。

直观上来看:

  • MSE 无差别得关注全部类别上预测概率和真实概率的差。
  • CE 关注的是正确类别的预测概率。

多分类问题中,使用 sigmoid 和 softmax 作为最后一层激活函数的区别

  • sigmoid 函数的每次输出是相互独立的,不能体现样本之间的相关性。
  • 而softmax 的归一化意味着一个输出增大必然伴随着其他输出的减小,这更符合概率规则,体现了样本互斥的关系。
  • 如果是一个样本隶属于多个样本,且各个样本是相互独立的分类问题,可以采用 sigmoid 作为每个输出的激活函数;而对于类别互斥的分类问题则应该采用 softmax 作为最后的激活函数。

为什么 LSTM 中的激活函数为 tanh 和 sigmoid 而不用 Relu

在 LSTM 中,sigmoid 作用为门函数的作用,取值范围为 (0, 1),是无法替代的

使用 Relu 的目的是为了解决梯度消失问题,而在 LSTM 中,由于时序上的残差机制,梯度消失问题已经大大减弱了。

另一方面,tanh 能够将模型输出映射在 (-1, 1) 范围内,更易于优化

softmax 的反向传播

对于多分类问题,输出层激活函数为softmax的单层神经网络分类器只考虑权重参数 \(W\),采用SGD的优化方法,输入样本为 \(x\),标注为 \(y\),样本特征维度为 \(m\),类别个数为 \(n\),其前向传播和反向传播公式:

  • 前向传播:

\[\begin{aligned}
&z = Wx \\
&p_i = softmax(z) = \frac{exp(z_i)}{\sum_{j=1}^{n} exp(z_j)} \\
&L(\hat{y}, y) = -\sum_{i=1}^ny_i\ log\ p_i
\end{aligned}\]

  • 反向传播:

\[\frac{\partial L}{\partial p_i} = -\sum_{i=1}^n\frac{y_i}{p_i}
\]

\[\begin{cases}
\frac{\partial p_i}{\partial z_j} = \frac{exp(z_j)\sum_{k=1}^{n} exp(z_k) - exp(z_j)^2}{(\sum_{k=1}^{n} exp(z_k))^2} = p_j(1-p_j) & , i = j\\
\frac{\partial p_i}{\partial z_j} = -\frac{exp(z_j)exp(z_i)}{(\sum_{k=1}^{n} exp(z_k))^2} = -p_ip_j & , i \ne j
\end{cases}
\]

\[\begin{aligned}
&\frac{\partial L}{\partial z_i} = \frac{\partial p_i}{\partial z_i} \frac{\partial p_i}{\partial z_i}\\
&= - \frac{y_i}{p_i}p_i(1-p_i) - \sum_{j\ne i}\frac{y_j}{p_j}(-p_ip_j) \\
&= -y_i + p_iy_i + p_i\sum_{j\ne i}y_j \\
&= -y_i + p_i \sum_{j=1}^ny_j \\
&= p_i - y_i
\end{aligned}\]

表示为矩阵为:\(\frac{\partial L}{\partial z} = p - y\)

【NLP面试QA】激活函数与损失函数的更多相关文章

  1. 【NLP面试QA】基本策略

    目录 防止过拟合的方法 什么是梯度消失和梯度爆炸?如何解决? 在深度学习中,网络层数增多会伴随哪些问题,怎么解决? 关于模型参数 模型参数初始化的方法 模型参数初始化为 0.过大.过小会怎样? 为什么 ...

  2. 【NLP面试QA】预训练模型

    目录 自回归语言模型与自编码语言 Bert Bert 中的预训练任务 Masked Language Model Next Sentence Prediction Bert 的 Embedding B ...

  3. AI-逻辑回归函数、激活函数、损失函数

    最近开始学习人工智能,先从基本的概念学起 逻辑回归函数(预测函数):z = dot(w,x) + b 解释:假设有三个特征,即x可以表示为(x1,x2,x3),w表示权重,对应每个特征的重要程度,b表 ...

  4. tensorflow中常用激活函数和损失函数

    激活函数 各激活函数曲线对比 常用激活函数: tf.sigmoid() tf.tanh() tf.nn.relu() tf.nn.softplus() tf.nn.softmax() tf.nn.dr ...

  5. 如何面试QA(面试官角度)

    面试是一对一 或者多对一的沟通,是和候选人 互相交换信息.平等的. 面试的目标是选择和雇佣最适合的人选.是为了完成组织目标.协助人力判断候选人是否合适空缺职位. 面试类型: (1)预判面试(查看简历后 ...

  6. 【面试QA】Attention

    目录 Attention机制的原理 Attention机制的类别 双向注意力 Self-Attention 与 Soft-Attention 的区别 Transformer Multi-Head At ...

  7. 一份从入门到精通NLP的完整指南 | NLPer

    该小博主介绍 本人:笔名zenRRan,方向自然语言处理,方法主要是深度学习. 未来的目标:人工智能之自然语言处理博士. 写公众号目的:将知识变成开源,让每个渴求知识而难以入门人工智能的小白以及想进阶 ...

  8. 干货 | 请收下这份2018学习清单:150个最好的机器学习,NLP和Python教程

    机器学习的发展可以追溯到1959年,有着丰富的历史.这个领域也正在以前所未有的速度进化.在之前的一篇文章中,我们讨论过为什么通用人工智能领域即将要爆发.有兴趣入坑ML的小伙伴不要拖延了,时不我待! 在 ...

  9. GitHub万星的ML算法面试大全

    项目地址:https://github.com/imhuay/Algorithm_Interview_Notes-Chinese 如下所示为整个项目的结构,其中从机器学习到数学主要提供的是笔记与面试知 ...

随机推荐

  1. 一个简单的爬取b站up下所有视频的所有评论信息的爬虫

    心血来潮搞了一个简单的爬虫,主要是想知道某个人的b站账号,但是你知道,b站在搜索一个用户时,如果这个用户没有投过稿,是搜不到的,,,这时就只能想方法搞到对方的mid,,就是 space.bilibil ...

  2. ef01

    1.ef简介 学习地址: https://www.entityframeworktutorial.net/ orm:Object relations mapping 对象关系映射 实体类中的属性与数据 ...

  3. XSS_跨站脚本攻击

    前段时间在网上看到一个网址,好奇之下进去看了看.胜利的条件是你录入一个串,让其调用prompt(1) .发现里面有好多想不到的东西,今天终于悠闲了来这里说说XSS. XSS 原理 恶意攻击者往Web页 ...

  4. AOP和spring AOP学习记录

    AOP基本概念的理解 面向切面AOP主要是在编译期或运行时,对程序进行织入,实现代理, 对原代码毫无侵入性,不破坏主要业务逻辑,减少程序的耦合度. 主要应用范围: 日志记录,性能统计,安全控制,事务处 ...

  5. Xcode调试之exc_bad_access以及 message sent to deallocated instance

    如果出现exc_bad_access错误,基本上是由于内存泄漏,错误释放,对一个已经释放的对象进行release操作.但是xcode有时候不会告诉你错误在什么地方(Visual Studio这点做得很 ...

  6. 2019-2020-2 20175226 王鹏雲 网络对抗技术 Exp2 后门原理与实践

    2019-2020-2 20175226 王鹏雲 网络对抗技术 Exp2 后门原理与实践 实验内容 使用netcat获取主机操作Shell,cron启动: 使用socat获取主机操作Shell, 任务 ...

  7. 2019-2020-2 20174318张致豪《网络对抗技术》Exp1 PC平台逆向破解

    Exp1_PC平台逆向破解 前期准备 一.逆向及Bof基础实践说明 1.1 实践目标 本次实践的对象是一个名为pwn1的linux可执行文件. 该程序正常执行流程是:main调用foo函数,foo函数 ...

  8. Web架构之Nginx基础配置

    目录 1.Nginx 虚拟主机 1.1.基于域名的虚拟主机 1.2.基于端口的虚拟主机 1.3.基于IP的虚拟主机 2.Nginx include 3.Nginx 日志配置 3.1.访问日志 3.2. ...

  9. 修改webserver站点用户组权限

    例如webserver站点目录为webtest 搭建nginxwebserver服务器的时候,默认的用户和用户组权限为nginx:nginx, 即nginx.conf 和php-frm.conf 中默 ...

  10. 数据挖掘入门系列教程(四)之基于scikit-lean实现决策树

    目录 数据挖掘入门系列教程(四)之基于scikit-lean决策树处理Iris 加载数据集 数据特征 训练 随机森林 调参工程师 结尾 数据挖掘入门系列教程(四)之基于scikit-lean决策树处理 ...