PAT Advanced 1053 Path of Equal Weight (30) [树的遍历]
题目
Given a non-empty tree with root R, and with weight Wi assigned to each tree node Ti. The weight of a path from R to L is defined to be the sum of the weights of all the nodes along the path from R to any leaf node L. Now given any weighted tree, you are supposed to find all the paths with their weights equal to a given number. For example, let’s consider the tree showed in Figure 1: for each node, the upper number is the node ID which is a two-digit number, and the lower number is the weight of that node. Suppose that the given number is 24, then there exists 4 diferent paths which have the same given weight: {10 5 2 7}, {10 4 10}, {10 3 3 6 2} and {10 3 3 6 2}, which correspond to the red edges in Figure 1.
Input Specification:
Each input file contains one test case. Each case starts with a line containing 0 < N <= 100, the number of nodes in a tree, M (< N), the number of non-leaf nodes, and 0 < S < 230, the given weight number. The next line contains N positive numbers where Wi (<1000) corresponds to the tree node Ti. Then M lines follow, each in the format:
ID K ID[1] ID[2] … ID[K]
where ID is a two-digit number representing a given non-leaf node, K is the number of its children, followed by a sequence of two-digit ID’s of its children. For the sake of simplicity, let us fix the root ID to be 00.
Output Specification:
For each test case, print all the paths with weight S in non-increasing order. Each path occupies a line with printed weights from the root to the leaf in order. All the numbers must be separated by a space with no extra space at the end of the line.
Note: sequence {A1, A2, …, An} is said to be greater than sequence {B1, B2, …, Bm} if there exists 1 <= k < min{n, m} such that Ai = Bi for i=1, … k, and Ak+1 > Bk+1.
Sample Input:
20 9 24
10 2 4 3 5 10 2 18 9 7 2 2 1 3 12 1 8 6 2 2
00 4 01 02 03 04
02 1 05
04 2 06 07
03 3 11 12 13
06 1 09
07 2 08 10
16 1 15
13 3 14 16 17
17 2 18 19
Sample Output:
10 5 2 7
10 4 10
10 3 3 6 2
10 3 3 6 2
题目分析
已知非叶子节点的所有子节点,已知每个节点的权重,已知一个权重和S,求权重和等于S的路径(该路径必须是从root到叶子节点)
注:多个满足条件的路径,必须非升序打印,序列A>序列B的条件为:A1Ai与B1Bi相等,但是Ai+1>Bi+1
解题思路
- 定义节点结构体(权重:w,子节点cds),int path[n]记录从root到当前节点路径
- 题目要求权重非增序输出,每个节点的所有节点信息输入完成后,对所有子节点进行排序(权重由大到小,权重最大的节点排在最左边),深度优先遍历时会从最左边路径开始,可保证最后输出的路径满足非升序条件
- dfs深度优先遍历树,参数numNode记录当前path中元素的个数,参数sum记录从root到当前节点的权重和
3.1 若权重和>s,退出不再处理该路径
3.2 若权重和==s
3.2.1 若当前节点是叶子节点,打印路径
3.2.2 若当前节点是非叶子节点,退出不再处理该路径
Code
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
const int maxn=101;
int s,path[maxn];
struct node {
int w;
vector<int> cds;
} nds[maxn];
bool cmp(int a,int b) {
return nds[a].w>nds[b].w;
}
// index当前处理节点在nds中的下标,numNode当前path数组中元素个数,sum从root到当前节点权重和
void dfs(int index, int numNode, int sum) {
if(sum>s)return; //权重和超过s
if(sum==s) {
if(nds[index].cds.size()!=0)return; //权重和为s,但不是叶子节点
//满足条件,权重和为s,且为叶子节点
for(int i=0; i<numNode; i++) {
if(i!=0)printf(" ");
printf("%d",nds[path[i]].w);
if(i==numNode-1)printf("\n");
}
return;
}
for(int i=0; i<nds[index].cds.size(); i++) {
int cdi = nds[index].cds[i]; //子节点在nds中的下标
path[numNode] = cdi;
dfs(cdi, numNode+1, sum+nds[cdi].w);
}
}
int main(int argc,char * argv[]) {
int n,m,cn,id,cid;
scanf("%d %d %d",&n,&m,&s);
for(int i=0; i<n; i++) {
scanf("%d",&nds[i].w);
}
for(int i=0; i<m; i++) {
scanf("%d %d",&id,&cn);
for(int j=0; j<cn; j++) {
scanf("%d",&cid);
nds[id].cds.push_back(cid);
}
sort(nds[id].cds.begin(),nds[id].cds.end(),cmp);
}
path[0]=0;
dfs(0,1,nds[0].w);
return 0;
}
PAT Advanced 1053 Path of Equal Weight (30) [树的遍历]的更多相关文章
- pat 甲级 1053. Path of Equal Weight (30)
1053. Path of Equal Weight (30) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue ...
- PAT 甲级 1053 Path of Equal Weight (30 分)(dfs,vector内元素排序,有一小坑点)
1053 Path of Equal Weight (30 分) Given a non-empty tree with root R, and with weight Wi assigne ...
- 【PAT】1053 Path of Equal Weight(30 分)
1053 Path of Equal Weight(30 分) Given a non-empty tree with root R, and with weight Wi assigned t ...
- PAT (Advanced Level) 1053. Path of Equal Weight (30)
简单DFS #include<cstdio> #include<cstring> #include<cmath> #include<vector> #i ...
- 【PAT甲级】1053 Path of Equal Weight (30 分)(DFS)
题意: 输入三个正整数N,M,S(N<=100,M<N,S<=2^30)分别代表数的结点个数,非叶子结点个数和需要查询的值,接下来输入N个正整数(<1000)代表每个结点的权重 ...
- PAT甲题题解-1053. Path of Equal Weight (30)-dfs
由于最后输出的路径排序是降序输出,相当于dfs的时候应该先遍历w最大的子节点. 链式前向星的遍历是从最后add的子节点开始,最后添加的应该是w最大的子节点, 因此建树的时候先对child按w从小到大排 ...
- 1053 Path of Equal Weight (30)(30 分)
Given a non-empty tree with root R, and with weight W~i~ assigned to each tree node T~i~. The weight ...
- 1053. Path of Equal Weight (30)
Given a non-empty tree with root R, and with weight Wi assigned to each tree node Ti. The weight of ...
- 1053 Path of Equal Weight (30分)(并查集)
Given a non-empty tree with root R, and with weight Wi assigned to each tree node Ti. The weig ...
随机推荐
- Java 类加载器(ClassLoader)
类加载器 ClassLoader 什么是类加载器? 通过一个类的全限定名来获取描述此类的二进制字节流这个动作放到Java虚拟机外部去实现, 以便让应用程序自己决定如何去获取所需要的类.实现这个动作的代 ...
- A convenient way to recognize and handwrite multidimensional arrays in Numpy
As a new learner of Numpy, it is very common to be confused by the form of array, braces nested in b ...
- l5213. 玩筹码
这道题本应该很简单的但是我把他复杂化了,所以没有在第一时间里A出来.我们来看看题目 看上去是不是很复杂,思路是有,但是,很难实现.我最开始的时候是认为有三种情况,左边筹码最多,右边筹码最多,中间筹码最 ...
- 微服务中springboot启动问题
log4j:WARN No appenders could be found for logger (org.springframework.web.context.support.StandardS ...
- vim 好用的插件
1 切换文件 使用buffer 这里可以安装一个 minibufExplorer https://github.com/huanglongchao/minibufexpl.vim 2 在项 ...
- jQuery原理系列-css选择器实现
jQuery最强大的功能在于它可以通过css选择器查找元素,它的源码中有一半是sizzle css选择器引擎的代码,在html5规范出来之后,增加了document.querySelector和doc ...
- HDU 4901 多校4 经典计数DP
RT 最近不想写博客,累积了一周多的题目,今天趁着周日放假,全部补上吧 dp[i][j]表示前i个数,操作后的值为j的总个数 注意取或不取,有种完全背包的意味.因为数字小于1024,所以异或的结果也绝 ...
- javaweb 最简单的分页技术
原文来自于https://www.cnblogs.com/xwlych/p/6017833.html 个人由加了一点注释,他的代码我运行不起来,弄了好一会 bean包 User.java packa ...
- javascript如何获取复选框中的值?
思路:获取checkbox对象→循环checkbox数组,根据checked属性判断是否选中→使用value属性获取选中项的值.实例演示如下: 1.HTML结构 <form> <in ...
- ES6 - 装饰器 - Decorater
注意,修饰器对类的行为的改变,是代码编译时发生的,而不是在运行时.这意味着,修饰器能在编译阶段运行代码.也就是说,修饰器本质就是编译时执行的函数. 修饰器是一个对类进行处理的函数.修饰器函 ...