前文传送门:

「Python 图像处理 OpenCV (1):入门」

普通操作

1. 读取像素

读取像素可以通过行坐标和列坐标来进行访问,灰度图像直接返回灰度值,彩色图像则返回B、G、R三个分量。

需要注意的是, OpenCV 读取图像是 BGR 存储显示。

灰度图片读取操作:

import cv2 as cv

# 灰度图像读取
gray_img = cv.imread("maliao.jpg", cv.IMREAD_GRAYSCALE)
print(gray_img[20, 30]) # 显示图片
cv.imshow("gray_img", gray_img) # 等待输入
cv.waitKey()
cv.destroyAllWindows()

对于读取灰度图像的像素值,只会返回相应的灰度。

彩色图像读取操作:

import cv2 as cv

# 彩色图像读取
color_img = cv.imread("maliao.jpg", cv.IMREAD_COLOR) print(color_img[20, 30]) blue = color_img[20, 30, 0]
print(blue) green = color_img[20, 30, 1]
print(green) red = color_img[20, 30, 2]
print(red) # 显示图片
cv.imshow("color_img", color_img) # 等待输入
cv.waitKey()
cv.destroyAllWindows() # 打印结果
[ 3 2 236]
3
2
236

需要注意的是在获取彩色图片像素时的第二个参数 1|2|3 的含义是获取 BGR 三个通道的像素。

2. 修改像素

修改像素时,直接对像素赋值新像素即可。

如果是灰度图片,直接赋值即可。

如果是彩色图片,则需依次给 BGR 三个通道的像素赋值。

import cv2 as cv

# 灰度图像读取
gray_img = cv.imread("maliao.jpg", cv.IMREAD_GRAYSCALE)
print(gray_img[20, 30])
# 像素赋值
gray_img[20, 30] = 255
print(gray_img[20, 30]) # 打印结果
72
255 # 彩色图像读取
color_img = cv.imread("maliao.jpg", cv.IMREAD_COLOR)
print(color_img[20, 30])
# 像素依次赋值
color_img[20, 30, 0] = 255
color_img[20, 30, 1] = 255
color_img[20, 30, 2] = 255
print(color_img[20, 30]) # 打印结果
[ 3 2 236]
[255 255 255]

如果觉得依次对 BGR 三个通道赋值有些麻烦的话,也可以通过数组直接对像素点一次赋值:

# 像素一次赋值
color_img[20, 30] = [0, 0, 0]
print(color_img[20, 30]) # 打印结果
[0 0 0]

下面是对一个区域的像素进行赋值,将这个区域的像素全都赋值成为白色:

import cv2 as cv

color_img = cv.imread("maliao.jpg", cv.IMREAD_COLOR)
color_img[50:100, 50:100] = [255, 255, 255] cv.imshow("color_img", color_img)
cv.waitKey()
cv.destroyAllWindows()

使用 Numpy 操作

1. 读取像素

使用 Numpy 进行像素读取,调用方式如下:

返回值 = 图像.item(位置参数)

读取灰度图像和彩色图像如下:

import cv2 as cv

# 读取灰度图像
gray_img = cv.imread("maliao.jpg", cv.IMREAD_GRAYSCALE)
print(gray_img.item(20, 30)) # 打印结果
72 # 读取彩色图像
color_img = cv.imread("maliao.jpg", cv.IMREAD_COLOR) blue = color_img.item(20, 30, 0)
print(blue) green = color_img.item(20, 30, 1)
print(green) red = color_img.item(20, 30, 2)
print(red) # 打印结果
3
2
236

2. 修改像素

修改像素需要使用到 Numpy 的 itemset() 方法,调用方式如下:

图像.itemset(位置, 新值)

下面是我将 [20, 30] 这个修改为白色的示例:

import cv2 as cv

# 读取彩色图像
color_img = cv.imread("maliao.jpg", cv.IMREAD_COLOR) print(color_img[20, 30]) color_img.itemset((20, 30, 0), 255)
color_img.itemset((20, 30, 1), 255)
color_img.itemset((20, 30, 2), 255) print(color_img[20, 30]) # 输出结果
[ 3 2 236]
[255 255 255]

注意:普通操作通常用于选择数组的区域,例如上面的示例中的选择了 [50:100, 50:100] 这么一个正方形。对于单个像素访问, Numpy 数组方法 array.item() 和 array.itemset() 被认为更好。

Matplotlib 显示图像

我们可以通过 OpenCV 读入图像,然后使用 Matplotlib 来进行图像显示。

import cv2 as cv
from matplotlib import pyplot as plt img=cv.imread('maliao.jpg', cv.IMREAD_COLOR)
plt.imshow(img)
plt.show()

如果我们直接使用 Matplotlib 来显示 OpenCV 读入的图像,会得到下面这个蓝色的马里奥:

这是因为对于 OpenCV 的像素是 BGR 顺序,然而 Matplotlib 所遵循的是 RGB 顺序。

解决的方案有很多种(循环像素点的不算哈,这个太傻了),如下:

import cv2 as cv
from matplotlib import pyplot as plt img=cv.imread('maliao.jpg',cv.IMREAD_COLOR) # method1
b,g,r=cv.split(img)
img2=cv.merge([r,g,b])
plt.imshow(img2)
plt.show() # method2
img3=img[:,:,::-1]
plt.imshow(img3)
plt.show() # method3
img4=cv.cvtColor(img, cv.COLOR_BGR2RGB)
plt.imshow(img4)
plt.show()

结果我就不贴了,这三种方法都可以完成 BGR 至 RGB 的转换。

示例代码

如果有需要获取源码的同学可以在公众号回复「OpenCV」进行获取。

参考

https://blog.csdn.net/eastmount/article/details/82120114

http://woshicver.com/

Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像的更多相关文章

  1. Python 图像处理 OpenCV (3):图像属性、图像感兴趣 ROI 区域及通道处理

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 图像属性 图像 ...

  2. Python 图像处理 OpenCV (4):图像算数运算以及修改颜色空间

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  3. Python 图像处理 OpenCV (5):图像的几何变换

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  4. Python 图像处理 OpenCV (6):图像的阈值处理

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  5. Python 图像处理 OpenCV (7):图像平滑(滤波)处理

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  6. Python 图像处理 OpenCV (9):图像处理形态学开运算、闭运算以及梯度运算

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  7. Python 图像处理 OpenCV (10):图像处理形态学之顶帽运算与黑帽运算

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  8. Python 图像处理 OpenCV (12): Roberts 算子、 Prewitt 算子、 Sobel 算子和 Laplacian 算子边缘检测技术

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  9. Python 图像处理 OpenCV (13): Scharr 算子和 LOG 算子边缘检测技术

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

随机推荐

  1. tensorflow1.0 构建卷积神经网络

    import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import os os.envi ...

  2. fashion_mnist多分类训练,两种模型的保存与加载

    from tensorflow.python.keras.preprocessing.image import load_img,img_to_array from tensorflow.python ...

  3. PHP 获取前两页的url地址

    通过隐藏表单控件 <input type="hidden" name="prevurl" value="<?php echo $_SERV ...

  4. Apache Rewrite实现URL的跳转和域名跳转

    Apache Rewrite实现URL的跳转和域名跳转   Rewirte主要的功能就是实现URL的跳转,它的正则表达式是基于Perl语言.可基 于服务器级的(httpd.conf)和目录级的 (.h ...

  5. Linux查看端口或pid使用路径

    1. lsof -i:10010 查看10010端口的占用情况 命令返回结果: 2. netstat -lpn | grep 80 查看80端口服务端socket占用状况 3. ll /proc/26 ...

  6. VC++ QT 数组的初始化

    数组有时会初始化为0. 但加了一个 QThread 的派生类对象之后,数组就不再被初始化为0了. 所以对于数组还是要手动初始化,否则可能产生无法预料的现象.

  7. cocos2dx新建项目

    首先你得下载好cococs2dx,还有python2.x版本,还有vs2017 然后cmd在你Cocos2dx的路径下输入 python setup.py 然后你就回车回车回车 然后重新打开cmd 这 ...

  8. JVM原理以及深度调优(二)

    JVM内存分配 内存分配其实真正来讲是有三种的.但对于JVM来说只有两种 栈内存分配: 大家在调优的过程中会发现有个参数是-Xss 默认是1m,这个内存是栈内存分配, 在工作中会发现栈OutOfMem ...

  9. CSAPP Chapter 8:Exception Control Flow

    prcesssor在运行时,假设program counter的值为a0, a1, ... , an-1,每个ak表示相对应的instruction的地址.从ak到ak+1的变化被称为control ...

  10. LightOJ 1287 Where to Run(期望)

    题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1287 题意:给定一个n个点的无向图(0到n-1),你开始在0.你开始遍历这个图 ...