前文传送门:

「Python 图像处理 OpenCV (1):入门」

普通操作

1. 读取像素

读取像素可以通过行坐标和列坐标来进行访问,灰度图像直接返回灰度值,彩色图像则返回B、G、R三个分量。

需要注意的是, OpenCV 读取图像是 BGR 存储显示。

灰度图片读取操作:

import cv2 as cv

# 灰度图像读取
gray_img = cv.imread("maliao.jpg", cv.IMREAD_GRAYSCALE)
print(gray_img[20, 30]) # 显示图片
cv.imshow("gray_img", gray_img) # 等待输入
cv.waitKey()
cv.destroyAllWindows()

对于读取灰度图像的像素值,只会返回相应的灰度。

彩色图像读取操作:

import cv2 as cv

# 彩色图像读取
color_img = cv.imread("maliao.jpg", cv.IMREAD_COLOR) print(color_img[20, 30]) blue = color_img[20, 30, 0]
print(blue) green = color_img[20, 30, 1]
print(green) red = color_img[20, 30, 2]
print(red) # 显示图片
cv.imshow("color_img", color_img) # 等待输入
cv.waitKey()
cv.destroyAllWindows() # 打印结果
[ 3 2 236]
3
2
236

需要注意的是在获取彩色图片像素时的第二个参数 1|2|3 的含义是获取 BGR 三个通道的像素。

2. 修改像素

修改像素时,直接对像素赋值新像素即可。

如果是灰度图片,直接赋值即可。

如果是彩色图片,则需依次给 BGR 三个通道的像素赋值。

import cv2 as cv

# 灰度图像读取
gray_img = cv.imread("maliao.jpg", cv.IMREAD_GRAYSCALE)
print(gray_img[20, 30])
# 像素赋值
gray_img[20, 30] = 255
print(gray_img[20, 30]) # 打印结果
72
255 # 彩色图像读取
color_img = cv.imread("maliao.jpg", cv.IMREAD_COLOR)
print(color_img[20, 30])
# 像素依次赋值
color_img[20, 30, 0] = 255
color_img[20, 30, 1] = 255
color_img[20, 30, 2] = 255
print(color_img[20, 30]) # 打印结果
[ 3 2 236]
[255 255 255]

如果觉得依次对 BGR 三个通道赋值有些麻烦的话,也可以通过数组直接对像素点一次赋值:

# 像素一次赋值
color_img[20, 30] = [0, 0, 0]
print(color_img[20, 30]) # 打印结果
[0 0 0]

下面是对一个区域的像素进行赋值,将这个区域的像素全都赋值成为白色:

import cv2 as cv

color_img = cv.imread("maliao.jpg", cv.IMREAD_COLOR)
color_img[50:100, 50:100] = [255, 255, 255] cv.imshow("color_img", color_img)
cv.waitKey()
cv.destroyAllWindows()

使用 Numpy 操作

1. 读取像素

使用 Numpy 进行像素读取,调用方式如下:

返回值 = 图像.item(位置参数)

读取灰度图像和彩色图像如下:

import cv2 as cv

# 读取灰度图像
gray_img = cv.imread("maliao.jpg", cv.IMREAD_GRAYSCALE)
print(gray_img.item(20, 30)) # 打印结果
72 # 读取彩色图像
color_img = cv.imread("maliao.jpg", cv.IMREAD_COLOR) blue = color_img.item(20, 30, 0)
print(blue) green = color_img.item(20, 30, 1)
print(green) red = color_img.item(20, 30, 2)
print(red) # 打印结果
3
2
236

2. 修改像素

修改像素需要使用到 Numpy 的 itemset() 方法,调用方式如下:

图像.itemset(位置, 新值)

下面是我将 [20, 30] 这个修改为白色的示例:

import cv2 as cv

# 读取彩色图像
color_img = cv.imread("maliao.jpg", cv.IMREAD_COLOR) print(color_img[20, 30]) color_img.itemset((20, 30, 0), 255)
color_img.itemset((20, 30, 1), 255)
color_img.itemset((20, 30, 2), 255) print(color_img[20, 30]) # 输出结果
[ 3 2 236]
[255 255 255]

注意:普通操作通常用于选择数组的区域,例如上面的示例中的选择了 [50:100, 50:100] 这么一个正方形。对于单个像素访问, Numpy 数组方法 array.item() 和 array.itemset() 被认为更好。

Matplotlib 显示图像

我们可以通过 OpenCV 读入图像,然后使用 Matplotlib 来进行图像显示。

import cv2 as cv
from matplotlib import pyplot as plt img=cv.imread('maliao.jpg', cv.IMREAD_COLOR)
plt.imshow(img)
plt.show()

如果我们直接使用 Matplotlib 来显示 OpenCV 读入的图像,会得到下面这个蓝色的马里奥:

这是因为对于 OpenCV 的像素是 BGR 顺序,然而 Matplotlib 所遵循的是 RGB 顺序。

解决的方案有很多种(循环像素点的不算哈,这个太傻了),如下:

import cv2 as cv
from matplotlib import pyplot as plt img=cv.imread('maliao.jpg',cv.IMREAD_COLOR) # method1
b,g,r=cv.split(img)
img2=cv.merge([r,g,b])
plt.imshow(img2)
plt.show() # method2
img3=img[:,:,::-1]
plt.imshow(img3)
plt.show() # method3
img4=cv.cvtColor(img, cv.COLOR_BGR2RGB)
plt.imshow(img4)
plt.show()

结果我就不贴了,这三种方法都可以完成 BGR 至 RGB 的转换。

示例代码

如果有需要获取源码的同学可以在公众号回复「OpenCV」进行获取。

参考

https://blog.csdn.net/eastmount/article/details/82120114

http://woshicver.com/

Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像的更多相关文章

  1. Python 图像处理 OpenCV (3):图像属性、图像感兴趣 ROI 区域及通道处理

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 图像属性 图像 ...

  2. Python 图像处理 OpenCV (4):图像算数运算以及修改颜色空间

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  3. Python 图像处理 OpenCV (5):图像的几何变换

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  4. Python 图像处理 OpenCV (6):图像的阈值处理

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  5. Python 图像处理 OpenCV (7):图像平滑(滤波)处理

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  6. Python 图像处理 OpenCV (9):图像处理形态学开运算、闭运算以及梯度运算

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  7. Python 图像处理 OpenCV (10):图像处理形态学之顶帽运算与黑帽运算

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  8. Python 图像处理 OpenCV (12): Roberts 算子、 Prewitt 算子、 Sobel 算子和 Laplacian 算子边缘检测技术

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  9. Python 图像处理 OpenCV (13): Scharr 算子和 LOG 算子边缘检测技术

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

随机推荐

  1. Docker 安装 Jenkins , 并解决初始安装插件失败

    安装 Jenkins 后,初始化下载插件总是失败,导致安装不成功,重试好几次都是卡在安装插件那. 这里记录下 Docker 下怎么安装 Jenkins ,并解决初始安装插件失败问题. 安装插件失败,其 ...

  2. python安装pil库,操作流程以及安装中出现的问题。

    0.用管理员方式打开cmd窗口. 1.跳转到python对应目录 比我: ***或者直接在该路径下输入cmd直接跳转.**** 例如: 直接回车搞定!! 2.输入 pip install pillow ...

  3. 一、Go语言由来与关键时间线

    Go语言,又称作Golang,是Google在2009年11月开源的开发语言.是一门静态强类型.编译型.并发型,并具有垃圾回收功能的编程语言. Go是罗伯特·格瑞史莫(Robert Griesemer ...

  4. Linux系统防火墙相关操作

    服务器重启后防火墙会自动开启,需要把防火墙关闭 以下为对防火墙进行的相关操作 查看防火墙状态 systemctl status firewalld service iptables status 暂时 ...

  5. linux下文件的打包和压缩

    文章来源:linux下文件的打包和压缩 目录 一.文件压缩的原理 二.linux常见的压缩指令 三.常用实例 1.tar命令 2.zip命令 3.gz命令 4.bz2命令 5.xz命令(必须分两步) ...

  6. 怎么在java 8的map中使用stream

    怎么在java 8的map中使用stream 简介 Map是java中非常常用的一个集合类型,我们通常也需要去遍历Map去获取某些值,java 8引入了Stream的概念,那么我们怎么在Map中使用S ...

  7. java.util.concurrent简介

    文章目录 主要的组件 Executor ExecutorService ScheduledExecutorService Future CountDownLatch CyclicBarrier Sem ...

  8. pip安装openvc-python国内镜像源

    采用清华大学的镜像源. pip install -i https://pypi.tuna.tsinghua.edu.cn/simple --trusted-host pypi.tuna.tsinghu ...

  9. var、let、const

    var.let.const之间的区别和使用 1.var声明变量可以重复声明,而let不可以重复声明 let a = 1; let a = 2; var b = 3; var b = 4; a // I ...

  10. 【Netapp】在模拟器中使用disk removeowner报错

    报错信息如下: Cluster2::storage disk*> removeowner NET-1.43 Error: command failed: Disk NET-1.43 is not ...