KNN项目实战——手写数字识别

1、 介绍

k近邻法(k-nearest neighbor, k-NN)是1967年由Cover T和Hart P提出的一种基本分类与回归方法。它的工作原理是:存在一个样本数据集合,也称作为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一个数据与所属分类的对应关系。输入没有标签的新数据后,将新的数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本最相似数据(最近邻)的分类标签。一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k-近邻算法中k的出处,通常k是不大于20的整数。最后,选择k个最相似数据中出现次数最多的分类,作为新数据的分类。

2、数据集介绍

32X32 文本格式数据.

3、代码实现

3.1、导包

import numpy as np
import pandas as pd
import matplotlib.pylab as plt
%matplotlib inline
import os

3.2、读取训练数据

# 获取数据文件
fileList = os.listdir('./data/trainingDigits/') # 定义数据标签列表
trainingIndex = []

# 添加数据标签
for filename in fileList:
trainingIndex.append(int(filename.split('_')[0])) # 定义矩阵数据格式
trainingData = np.zeros((len(trainingIndex),1024))
trainingData.shape
#(3868, 1024)
# 获取矩阵数据
index = 0
for filename in fileList:
with open('./data/trainingDigits/%s'%filename, 'rb') as f: # 定义一个空矩阵
vect = np.zeros((1,1024)) # 循环32行
for i in range(32):
# 读取每一行数据
line = f.readline() # 遍历每行数据索引 line[j] 即为数据
for j in range(32):
vect[0,32*i+j] = int(line[j]) trainingData[index,:] = vect
index+=1

3.3、读取测试数据

fileList2 = os.listdir('./data/testDigits/')

# 定义数据标签列表
testIndex = []

# 获取数据标签
for filename2 in fileList2:
testIndex.append(int(filename2.split('_')[0])) #读取测试数据 # 定义矩阵数据格式
testData = np.zeros((len(testIndex),1024))
testData.shape
#(946, 1024) # 获取矩阵数据
index = 0
for filename2 in fileList2:
with open('./data/testDigits/%s'%filename2, 'rb') as f: # 定义一个空矩阵
vect = np.zeros((1,1024)) # 循环32行
for i in range(32):
# 读取每一行数据
line = f.readline() # 遍历每行数据索引 line[j] 即为数据
for j in range(32):
vect[0,32*i+j] = int(line[j]) testData[index,:] = vect
index+=1

3.5、数据建模

from sklearn.neighbors import KNeighborsClassifier

# 定义 k 为5个, 即 寻找最近的3个邻居
knn = KNeighborsClassifier(n_neighbors=3) # 训练数据
knn.fit(trainingData,trainingIndex)

3.6、分析数据

%%time
# 预测数据 predict_data = knn.predict(testData) # Wall time: 7.8 s
knn.score(testData,testIndex)
#0.9862579281183932
# 识别正确率: 98.626%

KNN (K近邻算法) - 识别手写数字的更多相关文章

  1. KNN算法识别手写数字

    需求: 利用一个手写数字“先验数据”集,使用knn算法来实现对手写数字的自动识别: 先验数据(训练数据)集: ♦数据维度比较大,样本数比较多. ♦ 数据集包括数字0-9的手写体. ♦每个数字大约有20 ...

  2. KNN 算法-实战篇-如何识别手写数字

    公号:码农充电站pro 主页:https://codeshellme.github.io 上篇文章介绍了KNN 算法的原理,今天来介绍如何使用KNN 算法识别手写数字? 1,手写数字数据集 手写数字数 ...

  3. 基于OpenCV的KNN算法实现手写数字识别

    基于OpenCV的KNN算法实现手写数字识别 一.数据预处理 # 导入所需模块 import cv2 import numpy as np import matplotlib.pyplot as pl ...

  4. C#中调用Matlab人工神经网络算法实现手写数字识别

    手写数字识别实现 设计技术参数:通过由数字构成的图像,自动实现几个不同数字的识别,设计识别方法,有较高的识别率 关键字:二值化  投影  矩阵  目标定位  Matlab 手写数字图像识别简介: 手写 ...

  5. 使用神经网络来识别手写数字【译】(三)- 用Python代码实现

    实现我们分类数字的网络 好,让我们使用随机梯度下降和 MNIST训练数据来写一个程序来学习怎样识别手写数字. 我们用Python (2.7) 来实现.只有 74 行代码!我们需要的第一个东西是 MNI ...

  6. python手写神经网络实现识别手写数字

    写在开头:这个实验和matlab手写神经网络实现识别手写数字一样. 实验说明 一直想自己写一个神经网络来实现手写数字的识别,而不是套用别人的框架.恰巧前几天,有幸从同学那拿到5000张已经贴好标签的手 ...

  7. 学习笔记TF024:TensorFlow实现Softmax Regression(回归)识别手写数字

    TensorFlow实现Softmax Regression(回归)识别手写数字.MNIST(Mixed National Institute of Standards and Technology ...

  8. TensorFlow实战之Softmax Regression识别手写数字

         关于本文说明,本人原博客地址位于http://blog.csdn.net/qq_37608890,本文来自笔者于2018年02月21日 23:10:04所撰写内容(http://blog.c ...

  9. 一文全解:利用谷歌深度学习框架Tensorflow识别手写数字图片(初学者篇)

    笔记整理者:王小草 笔记整理时间2017年2月24日 原文地址 http://blog.csdn.net/sinat_33761963/article/details/56837466?fps=1&a ...

随机推荐

  1. 二、Python2.7的安装并与Python3.8共存

    一:Python解释器为什么要2个版本? 众所周知,Python2.7是一个过渡版本. 很多公司写的项目并不是基于最新的Python3写的,在之后进行一些项目更改的时候,Python3的语法有一些并不 ...

  2. rdd简单操作

    1.原始数据 Key value Transformations(example: ((1, 2), (3, 4), (3, 6)))  2. flatMap测试示例 object FlatMapTr ...

  3. python3(三十二) try except

    """ 异常处理 """ __author__on__ = 'shaozhiqi 2019/9/19' # 大量的代码来判断是否出错: # ...

  4. composer 巨慢的解决之道

    扯点犊子 composer 默认的源是在国外的.默认情况下由于大家都心知肚明的一些原因,导致我们使用composer安装一些插件的时候巨慢无比.这个时候怎么办呢? 原理很简单就是更换我们国内的comp ...

  5. api_DZFPKJ & api_DZFPCX(get_AES_url代码优化)

    通过AES加密网站的接口来传值,不需要手动加密字符串后复制过来传值. #coding:utf-8 import requests import re def get_aes_url(key, text ...

  6. 【python】显示图片 并随意缩放图片大小 图片归一化

    cv2.namedWindow("image_",0)  cv2.imshow("image_",image)就可以随意缩放显示图片的窗口大小啦. ------ ...

  7. 苹果登录服务端JWT算法验证-PHP

    验证参数 可用的验证参数有 userID.authorizationCode.identityToken,需要iOS客户端传过来 验证方式 苹果登录验证可以选择两种验证方式 具体可参考这篇文章 htt ...

  8. 2019-2020-1 20199310《Linux内核原理与分析》第六周作业

    1.问题描述 在前面的文章中,学习了系统调用的相关理论知识,并使用库函数API和C代码中嵌入汇编代码两种方式使用getpid()系统调用.本文将内容围绕系统调用system_call的处理过程,在Me ...

  9. 2019-2020-1 20199310《Linux内核原理与分析》第一周作业

    1.问题描述 1.1 问题一 Linux文件系统中的文件是数据的集合,文件系统不仅包含着文件中的数据而且还有文件系统的结构,探究根目录下主要文件用途. 1.2 问题二 有一个非常重要的文件(passw ...

  10. 微软的 Sysinternals 系统管理工具包,例如可找出自动启动的流氓软件

    作者:Kenny链接:https://www.zhihu.com/question/52157612/answer/153886419来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载 ...