题干

Bob is very interested in the data structure of a tree. A tree is a directed graph in which a special node is singled out, called the “root” of the tree, and there is a unique path from the root to each of the other nodes.

Bob intends to color all the nodes of a tree with a pen. A tree has N nodes, these nodes are numbered 1, 2, …, N. Suppose coloring a node takes 1 unit of time, and after finishing coloring one node, he is allowed to color another. Additionally, he is allowed to color a node only when its father node has been colored. Obviously, Bob is only allowed to color the root in the first try.

Each node has a “coloring cost factor”, Ci. The coloring cost of each node depends both on Ci and the time at which Bob finishes the coloring of this node. At the beginning, the time is set to 0. If the finishing time of coloring node i is Fi, then the coloring cost of node i is Ci * Fi.

For example, a tree with five nodes is shown in Figure-1. The coloring cost factors of each node are 1, 2, 1, 2 and 4. Bob can color the tree in the order 1, 3, 5, 2, 4, with the minimum total coloring cost of 33.

Given a tree and the coloring cost factor of each node, please help Bob to find the minimum possible total coloring cost for coloring all the nodes.

Input

The input consists of several test cases. The first line of each case contains two integers N and R (1 <= N <= 1000, 1 <= R <= N), where N is the number of nodes in the tree and R is the node number of the root node. The second line contains N integers, the i-th of which is Ci (1 <= Ci <= 500), the coloring cost factor of node i. Each of the next N-1 lines contains two space-separated node numbers V1 and V2, which are the endpoints of an edge in the tree, denoting that V1 is the father node of V2. No edge will be listed twice, and all edges will be listed.

A test case of N = 0 and R = 0 indicates the end of input, and should not be processed.

Output

For each test case, output a line containing the minimum total coloring cost required for Bob to color all the nodes.

Sample Input

5 1

1 2 1 2 4

1 2

1 3

2 4

3 5

0 0

Sample Output

33

题意,每个结点都有一个粉刷权值,第几个访问所消耗的代价就是权值乘以第几次访问!贪心,怎么贪?经历了觉得网站有问题以及换网站。





去CSDN去看了看大牛写的博客,解题报告,不太明白。慢慢的摸索,抄代码,修改,自己敲。比较 权值应该等于真实权值➗合并节点数,相当于这个节点由N个等权值结点组成。权值就是刷它之前所消耗的代价,这样理解起来就不是很难。

这样一来就是不断从大到小归并权值,直到root树根。

便有了如下贪心准则:

1.要使代价小,必须尽早访问权值较大的结点。

2.要访问该结点,必须先访问他的父节点。

3.访问一个节结后,从该节点的父结点访问该节点的子节点不需要 是消耗代价。

也就是说访问了最大值的父节点就因该立刻访问最大直结点。便可以找最大值节点开始访问。

代码如下

#include<iostream>
#include<queue>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<map>
#include<cstring>
using namespace std;
bool myfind();
struct object
{
int grade,fa,tim;
double weight;
}ob[1005];
int branch,root,flag,fa,kid,tem,mx=0;
int main()
{
ios::sync_with_stdio(false);
while(cin>>branch>>root)
{
tem=0;
memset(ob,0,sizeof(object)*1005);
if(branch==root&&branch==0) break;
for(int i=1;i<=branch;i++) cin>>ob[i].grade,ob[i].tim=1,ob[i].weight=ob[i].grade;
for(int i=1;i<branch;i++)
{
cin>>fa>>kid;
ob[kid].fa=fa;
}
while(myfind())
{
ob[ob[mx].fa].grade=ob[ob[mx].fa].grade+ob[mx].grade;
tem=tem+ob[ob[mx].fa].tim*ob[mx].grade;
ob[ob[mx].fa].tim=ob[ob[mx].fa].tim+ob[mx].tim;
//cout<<tem<<endl;
ob[mx].weight=0;
for(int i=1;i<=branch;i++)
{
if(ob[i].fa==mx) ob[i].fa=ob[mx].fa;
}
ob[ob[mx].fa].weight = 1.0*ob[ob[mx].fa].grade/ob[ob[mx].fa].tim ;
}
tem=tem+ob[root].grade;
cout<<tem+1<<endl;
}
return 0;
}
bool myfind()
{
double max=0;
flag=0;
for(int i=1;i<=branch;i++)
{
if(i==root) continue;
if(ob[i].weight>max)
{
max=ob[i].weight;
mx=i;
flag=1;
//cout<<i<<endl;
} }
return flag;
}

POJ 2054 Color a Tree解题报告的更多相关文章

  1. POJ 2054 Color a Tree

    贪心....                    Color a Tree Time Limit: 1000MS   Memory Limit: 30000K Total Submissions:  ...

  2. poj 2054 Color a Tree(贪婪)

    # include <stdio.h> # include <algorithm> # include <string.h> using namespace std ...

  3. POJ 2054 Color a Tree#贪心(难,好题)

    题目链接 代码借鉴此博:http://www.cnblogs.com/vongang/archive/2011/08/19/2146070.html 其中关于max{c[fa]/t[fa]}贪心原则, ...

  4. POJ 2054 Color a Tree (贪心)

    $ POJ~2054~Color~a~Tree $ $ solution: $ 我们先从题中抽取信息,因为每个点的费用和染色的次数有关,所以我们可以很自然的想到先给权值大的节点染色.但是题目还说每个节 ...

  5. 【LeetCode】863. All Nodes Distance K in Binary Tree 解题报告(Python)

    [LeetCode]863. All Nodes Distance K in Binary Tree 解题报告(Python) 作者: 负雪明烛 id: fuxuemingzhu 个人博客: http ...

  6. 【LeetCode】297. Serialize and Deserialize Binary Tree 解题报告(Python)

    [LeetCode]297. Serialize and Deserialize Binary Tree 解题报告(Python) 标签: LeetCode 题目地址:https://leetcode ...

  7. 【LeetCode】331. Verify Preorder Serialization of a Binary Tree 解题报告(Python)

    [LeetCode]331. Verify Preorder Serialization of a Binary Tree 解题报告(Python) 标签: LeetCode 题目地址:https:/ ...

  8. 【LeetCode】109. Convert Sorted List to Binary Search Tree 解题报告(Python)

    [LeetCode]109. Convert Sorted List to Binary Search Tree 解题报告(Python) 标签(空格分隔): LeetCode 作者: 负雪明烛 id ...

  9. 【LeetCode】236. Lowest Common Ancestor of a Binary Tree 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 日期 题目地址:https://leetcode.c ...

随机推荐

  1. 分治算法(C++版)

    #include<iostream>using namespace std;  void printArray(int array[],int length)  {      for (i ...

  2. python 递归、匿名函数、

    1.递归:就是函数自己调用自己.(注:递归最多循环999) 2.匿名函数(意义:减少内存占用) lambada 定义一个匿名函数,eg:lambad x,b:x+b  (:前面是入参eg:x,b,:后 ...

  3. Pytest系列(18)- 超美测试报告插件之allure-pytest的基础使用

    如果你还想从头学起Pytest,可以看看这个系列的文章哦! https://www.cnblogs.com/poloyy/category/1690628.html 官方介绍 Allure Frame ...

  4. Win10 cmd的ssh命令连接linux虚拟机

    其实就是一个小发现了~ 闲的没事的时候在cmd里面敲了ssh命令,居然提示是一个命令,貌似以前是没有这功能的.然后就打开虚拟机试试能不能远程连接.没想到还成功了~ 有了这功能就省得安装专门的远程连接工 ...

  5. Git应用详解第九讲:Git cherry-pick与Git rebase

    前言 前情提要:Git应用详解第八讲:Git标签.别名与Git gc 这一节主要介绍git cherry-pick与git rebase的原理及使用. 一.Git cherry-pick Git ch ...

  6. 精彩的jquery弹幕效果

    html页面如下: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://w ...

  7. L8梯度消失、梯度爆炸

    houseprices数据下载: 链接:https://pan.baidu.com/s/1-szkkAALzzJJmCLlJ1aXGQ 提取码:9n9k 梯度消失.梯度爆炸以及Kaggle房价预测 代 ...

  8. bypass安全狗测试学习

    搭建简单的sql注入环境 在test数据库中创建sqltest表,插入字段数据 编写存在注入的php文件 <?php $id = $_REQUEST['uid']; echo "您当前 ...

  9. Springboot:员工管理之删除员工及退出登录(十(9))

    springboot2.2.6 delete请求报错,降至2.1.11功能可用 原因未知 构建员工删除请求 com\springboot\controller\EmployeeController.j ...

  10. C# WCF 之优势及特性

    Windows Communication Foundation(WCF)是由微软开发的一系列支持数据通信的应用程序框架,可以翻译为Windows 通讯开发平台. 整合了原有的windows通讯的 . ...