1014 Waiting in Line (30分)

 

Suppose a bank has N windows open for service. There is a yellow line in front of the windows which devides the waiting area into two parts. The rules for the customers to wait in line are:

  • The space inside the yellow line in front of each window is enough to contain a line with M customers. Hence when all the N lines are full, all the customers after (and including) the (NM+1)st one will have to wait in a line behind the yellow line.
  • Each customer will choose the shortest line to wait in when crossing the yellow line. If there are two or more lines with the same length, the customer will always choose the window with the smallest number.
  • Customer​i​​ will take T​i​​ minutes to have his/her transaction processed.
  • The first N customers are assumed to be served at 8:00am.

Now given the processing time of each customer, you are supposed to tell the exact time at which a customer has his/her business done.

For example, suppose that a bank has 2 windows and each window may have 2 custmers waiting inside the yellow line. There are 5 customers waiting with transactions taking 1, 2, 6, 4 and 3 minutes, respectively. At 08:00 in the morning, customer​1​​ is served at window​1​​ while customer​2​​ is served at window​2​​. Customer​3​​ will wait in front of window​1​​ and customer​4​​ will wait in front of window​2​​. Customer​5​​ will wait behind the yellow line.

At 08:01, customer​1​​ is done and customer​5​​ enters the line in front of window​1​​ since that line seems shorter now. Customer​2​​ will leave at 08:02, customer​4​​ at 08:06, customer​3​​ at 08:07, and finally customer​5​​ at 08:10.

Input Specification:

Each input file contains one test case. Each case starts with a line containing 4 positive integers: N (≤20, number of windows), M (≤10, the maximum capacity of each line inside the yellow line), K (≤1000, number of customers), and Q (≤1000, number of customer queries).

The next line contains K positive integers, which are the processing time of the K customers.

The last line contains Q positive integers, which represent the customers who are asking about the time they can have their transactions done. The customers are numbered from 1 to K.

Output Specification:

For each of the Q customers, print in one line the time at which his/her transaction is finished, in the format HH:MM where HH is in [08, 17] and MM is in [00, 59]. Note that since the bank is closed everyday after 17:00, for those customers who cannot be served before 17:00, you must output Sorry instead.

Sample Input:

2 2 7 5
1 2 6 4 3 534 2
3 4 5 6 7
 

Sample Output:

08:07
08:06
08:10
17:00
Sorry

题意:

银行的上班时间为上午8:00到17:00(540分钟),银行有N个窗口,每个窗口前可以有M个位置排队。

银行来了K个客户,依次给出k个客户办理业务需要的时间tim[i],有q次询问,

每次询问第x个人的结束时间,若第x个人没有办理业务就输出Sorry

客户选择最短的队伍排,根据每个客户的序号和服务时间来确定最后客户离开银行的时间。

题解:

  https://blog.csdn.net/Apie_CZX/article/details/45537627

#include<iostream>
#include<cstdio>
#include<vector>
#include<cstring>
#include<stack>
#include<algorithm>
#include<map>
#include<string.h>
#include<string>
#include<queue>
#define MAX 1000000
#define ll long long
using namespace std;
int tim[],vis[];//vis标记每一个顾客的结束时间
queue<int>p[];
int main()
{
int n,m,k,q;
cin>>n>>m>>k>>q;
for(int i=;i<=k;i++)
cin>>tim[i]; int sum=,cnt=;
for(int t=;t<;t++)//只处理在上班时间范围内的顾客
{
while(sum<n*m&&cnt<=k)//先让所有人先进去(总人数为小于黄线区域内可以容纳的人数)
{
int id=;//队伍最短的窗口编号
for(int i=;i<n;i++)
{
if(p[i].size()<p[id].size())//有更短的窗口
id=i;
if(p[id].size()==)//该窗口没人
vis[cnt]=t+tim[cnt];//标记第cnt个人的结束时间
if(p[id].size()<m&&cnt<=k)//准备处理下一个人
{
p[id].push(cnt);
cnt++;
sum++;
}
}
} for(int i=;i<n;i++)//n个窗口
{
for(int j=;j<p[i].size();j++)
{
if(t==vis[p[i].front()])//第i个窗口的结束时间恰好是当前时间t
{
p[i].pop();
sum--; if(!p[i].empty())//记录该窗口下一个顾客的结束时间
{
int temp=p[i].front();
vis[temp]=t+tim[temp];
}
}
}
}
}
for(int i=;i<q;i++)
{
int x;
cin>>x;
if(vis[x]==)
cout<<"Sorry"<<endl;
else
printf("%02d:%02d\n",+vis[x]/,vis[x]%);
}
return ;
}

1014 Waiting in Line (30分)的更多相关文章

  1. PAT 甲级 1014 Waiting in Line (30 分)(queue的使用,模拟题,有个大坑)

    1014 Waiting in Line (30 分)   Suppose a bank has N windows open for service. There is a yellow line ...

  2. 1014 Waiting in Line (30 分)

    Suppose a bank has N windows open for service. There is a yellow line in front of the windows which ...

  3. PTA 1014 Waiting in Line (30分) 解题思路及满分代码

    题目 Suppose a bank has N windows open for service. There is a yellow line in front of the windows whi ...

  4. PAT 1014 Waiting in Line (30分) 一个简单的思路

    这题写了有一点时间,最开始想着优化一下时间,用优先队列去做,但是发现有锅,因为忽略了队的长度. 然后思考过后,觉得用时间线来模拟最好做,先把窗口前的队列填满,这样保证了队列的长度是统一的,这样的话如果 ...

  5. 【PAT甲级】1014 Waiting in Line (30 分)(队列维护)

    题面: 输入四个正整数N,M,K,Q(N<=20,M<=10,K,Q<=1000),N为银行窗口数量,M为黄线内最大人数,K为需要服务的人数,Q为查询次数.输入K个正整数,分别代表每 ...

  6. 1014 Waiting in Line (30)(30 分)

    Suppose a bank has N windows open for service. There is a yellow line in front of the windows which ...

  7. PAT A 1014. Waiting in Line (30)【队列模拟】

    题目:https://www.patest.cn/contests/pat-a-practise/1014 思路: 直接模拟类的题. 线内的各个窗口各为一个队,线外的为一个,按时间模拟出队.入队. 注 ...

  8. 1014. Waiting in Line (30)

    Suppose a bank has N windows open for service. There is a yellow line in front of the windows which ...

  9. 1014 Waiting in Line (30)(30 point(s))

    problem Suppose a bank has N windows open for service. There is a yellow line in front of the window ...

随机推荐

  1. 理解ASP.NET Core验证模型 Claim, ClaimsIdentity, ClaimsPrincipal

    Claim, ClaimsIdentity, ClaimsPrincipal: Claim:姓名:xxx,领证日期:xxx ClaimsIdentity:身份证/驾照 ClaimsPrincipal: ...

  2. java多线程信息共享

    上篇文章知识介绍了多线程的创建和启动问题,各个子线程和子线程或者说子线程和main线程没有信息的交流,这篇文章主要探讨线程之间信息共享以及交换问题.这篇文章主要以一个卖票例子来展开. 继承Thread ...

  3. 为什么要使用wsgi协议

    一个cs模型是由服务器和客户端组成,大多相互情况下也就是服务器端和浏览器之间的通信.通过浏览器请求服务器,然后服务器再响应浏览器. 那么如果浏览器想要请求一个python文件,例如http://127 ...

  4. flask 前端 分页 显示

    # flask 前端 分页 显示 1.分页原理 web查询大量数据并显示时有有三种方式: 从数据库中查询全部,在view/客户端筛选/分页:不能应对记录大多的情况,一般不使用: 分页查询,每次在数据库 ...

  5. AngularJS Learning Notes

    AngularJS 简介 AngularJS 是一个 JavaScript 框架.它可通过 <script> 标签添加到 HTML 页面. AngularJS 通过 指令 扩展了 HTML ...

  6. selenium常用的类库、对应的方法和属性

    selenium常用的类库.对应的方法和属性

  7. PCC值average pearson correlation coefficient计算方法

    1.先找到task paradise 的m1-m6: 2.根据公式Dy=D1* 1/P*∑aT ,例如 D :t*k1   a:k2*k1: Dy :t*k2 Dy应该有k2个原子,维度是t: 3.依 ...

  8. Redis搭建一主一从及哨兵模式(二)

    废话不多说,直接进入正题. 一.主从搭建 进入redis的根目录,拷贝一份redis.conf,最初的一份留作模版: ①cp  redis.conf redis.conf.template ②vim ...

  9. win10中,vscode安装go插件排雷指南

    最近学习go,想着使用强大的vscode编写go,在安装go插件过程中,遇到了很多问题.下面记录解决方案. 1)win10环境,安装go,vscode,git 配置GOPATH环境变量,在我的电脑-& ...

  10. abp方法权限

    一.自定义一个权限实体,也可以直接用abp的PermissionNames类 二.重写PermissionChecker中的IsGrantedAsync方法 public override async ...