正文

简单描述一下题意:

士兵想要过河,他每一次可以往下走一格,也可以往右走一格,但马一步走到的地方是不能走的,问走到\(n\)行,\(m\)列有多少种走法

我们显然应该先根据马的位置将不能走的格子做一下标记

于是,就会写下这段代码:

void work(long long x,long long y){
ma[x][y]=1;
ma[x-1][y-2]=1;
ma[x-2][y-1]=1;
ma[x-2][y+1]=1;
ma[x-1][y+2]=1;
ma[x+1][y-2]=1;
ma[x+2][y-1]=1;
ma[x+2][y+1]=1;
ma[x+1][y+2]=1;
}

之后就可以使用奥数中的一种简单而常用的方法——标数法

可以举个例子

从这个表格的第一行第一列,走到第二行第二列的走法数量是由走到第一行第二列的方案数+第二行第一列的方案数

也就是走到x行,y列的方案数=走到x-1行,y列的方案数+走到x行,y-1列的方案数(出界就按0算)

也就是

\[f[i][j]=f[i-1][j]+f[i][j-1]
\]

因为走到\(x\)行\(y\)列的方案显然是来自于它的左边和它的上面,因为只有这两个格子才可以一步到达这个格子。

于是我们就可以开始递推:

for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
if(i==1&&j==1)continue;
if(ma[i][j]==0)x[i][j]=x[i-1][j]+x[i][j-1];
}
}

下面是我AC的代码

#include <bits/stdc++.h>
using namespace std;
long long a,b,n,m,x[23][23],ma[23][23];
void work(long long x,long long y){
ma[x][y]=1;
ma[x-1][y-2]=1;
ma[x-2][y-1]=1;
ma[x-2][y+1]=1;
ma[x-1][y+2]=1;
ma[x+1][y-2]=1;
ma[x+2][y-1]=1;
ma[x+2][y+1]=1;
ma[x+1][y+2]=1;
}
int main(){
scanf("%lld %lld %lld %lld",&n,&m,&a,&b);
a++;
b++;
n++;
m++;
work(a,b);
x[1][1]=1;
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
if(i==1&&j==1)continue;
if(ma[i][j]==0)x[i][j]=x[i-1][j]+x[i][j-1];
}
}
printf("%lld",x[n][m]);
return 0;
}

后记与补充

观看这张图,我们还可以发现其他的东西,我们能发现下面一行比上一行大的值,就是它左边格子的值,所以,我们可以将这道题优化成一维,代码实现也是很简单的。

\[f[i]+=f[i-1]
\]

#include <bits/stdc++.h>
using namespace std;
long long a,b,n,m,f[23],ma[23][23];
void work(long long x,long long y){
ma[x][y]=1;
ma[x-1][y-2]=1;
ma[x-2][y-1]=1;
ma[x-2][y+1]=1;
ma[x-1][y+2]=1;
ma[x+1][y-2]=1;
ma[x+2][y-1]=1;
ma[x+2][y+1]=1;
ma[x+1][y+2]=1;
}
int main(){
scanf("%lld %lld %lld %lld",&n,&m,&a,&b);
a++;
b++;
n++;
m++;
work(a,b);
x[1][1]=1;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++){
if(i==1&&j==1)continue;
if(ma[i][j]==0)f[j]+=f[j-1];
}
printf("%lld",f[m]);
return 0;
}

如果我的文章对你有帮助请点个赞!!!

谢谢。

题解 P1002 【过河卒】的更多相关文章

  1. 洛谷 P1002过河卒

    洛谷 P1002过河卒 题目描述 棋盘上AA点有一个过河卒,需要走到目标BB点.卒行走的规则:可以向下.或者向右.同时在棋盘上CC点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点 ...

  2. 洛谷P1002 过河卒 [2017年4月计划 动态规划15]

    P1002 过河卒 题目描述 棋盘上A点有一个过河卒,需要走到目标B点.卒行走的规则:可以向下.或者向右.同时在棋盘上C点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点.因此称之 ...

  3. P1002 过河卒【dp】

    P1002 过河卒 题目描述 棋盘上AAA点有一个过河卒,需要走到目标BBB点.卒行走的规则:可以向下.或者向右.同时在棋盘上CCC点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制 ...

  4. 洛谷P1002 过河卒 题解 动态规划

    题目链接:https://www.luogu.com.cn/problem/P1002 题目大意 棋盘上\(A\)点有一个过河卒,需要走到目标\(B\)点.卒行走的规则:可以向下.或者向右.同时在棋盘 ...

  5. 洛谷 P1002 过河卒 【棋盘dp】

    题目链接:https://www.luogu.org/problemnew/show/P1002 题目描述 棋盘上A点有一个过河卒,需要走到目标B点.卒行走的规则:可以向下.或者向右.同时在棋盘上C点 ...

  6. 洛谷[P1002]过河卒

    原题地址:https://www.luogu.org/problemnew/show/P1002 题目描述 棋盘上A点有一个过河卒,需要走到目标B点.卒行走的规则:可以向下.或者向右.同时在棋盘上C点 ...

  7. P1002 过河卒

    题目描述 棋盘上A点有一个过河卒,需要走到目标B点.卒行走的规则:可以向下.或者向右.同时在棋盘上C点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点.因此称之为“马拦过河卒”. ...

  8. luogu P1002 过河卒

    题目描述 棋盘上A点有一个过河卒,需要走到目标B点.卒行走的规则:可以向下.或者向右.同时在棋盘上C点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点.因此称之为“马拦过河卒”. ...

  9. 洛谷P1002 过河卒

    关于蒟蒻的我,刚刚接触DP....   那么就来做一道简单DP吧.... 首先先看题: 题目描述 棋盘上AA点有一个过河卒,需要走到目标BB点.卒行走的规则:可以向下.或者向右.同时在棋盘上CC点有一 ...

  10. P1002 过河卒 【递推、简单动规】

    题目描述 棋盘上AA点有一个过河卒,需要走到目标BB点.卒行走的规则:可以向下.或者向右.同时在棋盘上CC点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点.因此称之为“马拦过河卒 ...

随机推荐

  1. python 爬虫保存文件的几种方法

    import os os.makedirs('./img/', exist_ok=True) IMAGE_URL = "https://morvanzhou.github.io/static ...

  2. hexo创建新文章的正确方法

    起因 之前我一直是通过复制以前的文章的形式来创建一个新的文档,但是这一次似乎遇到了一些问题.我将文章写完之后,准备进行预览,输入hexo s命令.在预览页面却没有显示出新的文章,还是和之前的页面是一样 ...

  3. Java 并发编程 -- Fork/Join 框架

    概述 Fork/Join 框架是 Java7 提供的一个用于并行执行任务的框架,是一个把大任务分割成若干个小任务,最终汇总每个小任务结果后得到大任务结果的框架.下图是网上流传的 Fork Join 的 ...

  4. 阿里大数据竞赛season1 总结

    关于样本测试集和训练集数量上,一般是选择训练集数量不小于测试集,也就是说训练集选取6k可能还不够,大家可以多尝试得到更好的效果: 2. 有人提出归一化方面可能有问题,大家可以查查其他的归一化方法,但是 ...

  5. php获取远程图片并把它保存到本地

    /* *功能:php多种方式完美实现下载远程图片保存到本地 *参数:文件url,保存文件名称,使用的下载方式 *当保存文件名称为空时则使用远程文件原来的名称 */ function getImage( ...

  6. C++扬帆远航——18(项目五2,递归式)

    /* * Copyright (c) 2016,烟台大学计算机与控制工程学院 * All rights reserved. * 文件名:qiushi.cpp * 作者:常轩 * 微信公众号:World ...

  7. Typora+PicGo+Gitee笔记方案

    前言:需要学习的知识太多,从一开始就在寻找一款能让我完全满意的编辑器,然而一直都没有令我满意的.在前两天Typora新版本更新后,总算是拥有了一套我认为很完美的笔记方案:使用Typora编写markd ...

  8. Java面试必问之Hashmap底层实现原理(JDK1.7)

    1. 前言 Hashmap可以说是Java面试必问的,一般的面试题会问: Hashmap有哪些特性? Hashmap底层实现原理(get\put\resize) Hashmap怎么解决hash冲突? ...

  9. mysql 存储过程 执行存储过程修改了表中所有行的信息

    存储过程中的where条件语句,如果传入的参数和表字段名相同,存储过程就会把这个约束条件忽略.小结:存储过程中传递的参数名不要和字段名相同.特别是修改.删除等操作,可能会对整张表产生影响.后果会很严重 ...

  10. Object-Oriented Programming Summary Ⅳ

    目录 UML单元总结博客 总结本单元两次作业的设计 总结自己在四个单元中架构设计以及OO方法理解的演进 总结自己在四个单元中测试理解与实践的演进 总结自己的课程收获 立足于自己的体会给课程组提三个具体 ...