题意:有n个人,已知每个人买东西的概率,求在已知r个人买了东西的条件下每个人买东西的概率。

分析:二进制枚举个数为r的子集,按定义求即可。

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<cmath>
#include<iostream>
#include<sstream>
#include<iterator>
#include<algorithm>
#include<string>
#include<vector>
#include<set>
#include<map>
#include<stack>
#include<deque>
#include<queue>
#include<list>
#define lowbit(x) (x & (-x))
const double eps = 1e-8;
inline int dcmp(double a, double b){
if(fabs(a - b) < eps) return 0;
return a > b ? 1 : -1;
}
typedef long long LL;
typedef unsigned long long ULL;
const int INT_INF = 0x3f3f3f3f;
const int INT_M_INF = 0x7f7f7f7f;
const LL LL_INF = 0x3f3f3f3f3f3f3f3f;
const LL LL_M_INF = 0x7f7f7f7f7f7f7f7f;
const int dr[] = {0, 0, -1, 1, -1, -1, 1, 1};
const int dc[] = {-1, 1, 0, 0, -1, 1, -1, 1};
const int MOD = 1e9 + 7;
const double pi = acos(-1.0);
const int MAXN = 20 + 10;
const int MAXT = 10000 + 10;
using namespace std;
double p[MAXN];
bool vis[MAXN];
double ans[MAXN];
int N, r;
double solve(){
double sum = 1;
for(int i = 0; i < N; ++i){
if(vis[i]) sum *= p[i];
else sum *= (1 - p[i]);
}
for(int i = 0; i < N; ++i){
if(vis[i]){
ans[i] += sum;
}
}
return sum;
}
int main(){
int kase = 0;
while(scanf("%d%d", &N, &r) == 2){
if(!N && !r) return 0;
memset(ans, 0, sizeof ans);
for(int i = 0; i < N; ++i){
scanf("%lf", &p[i]);
}
double sum = 0;
for(int i = 0; i < (1 << N); ++i){
memset(vis, false, sizeof vis);
int cnt = 0;
for(int j = 0; j < N; ++j){
if(i & (1 << j)){
++cnt;
vis[j] = true;
}
}
if(cnt == r){
sum += solve();
}
}
printf("Case %d:\n", ++kase);
for(int i = 0; i < N; ++i){
printf("%.6f\n", ans[i] / sum);
}
}
return 0;
}

  

UVA - 11181 Probability|Given (条件概率)的更多相关文章

  1. Uva - 11181 Probability|Given (条件概率)

    设事件B为一共有r个人买了东西,设事件Ai为第i个人买了东西. 那么这个题目实际上就是求P(Ai|B),而P(Ai|B)=P(AiB)/P(B),其中P(AiB)表示事件Ai与事件B同时发生的概率,同 ...

  2. 概率论 --- Uva 11181 Probability|Given

    Uva 11181 Probability|Given Problem's Link:   http://acm.hust.edu.cn/vjudge/problem/viewProblem.acti ...

  3. uva 11181 - Probability|Given(概率)

    题目链接:uva 11181 - Probability|Given 题目大意:有n个人去超市买东西,给出r,每个人买东西的概率是p[i],当有r个人买东西的时候,第i个人恰好买东西的概率. 解题思路 ...

  4. UVa 11181 - Probability|Given(条件概率)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  5. uva 11181 - Probability|Given

    条件概率公式:P( A|B ) = P( AB ) / P( B ) 表示在事件B发生的前提,事件A发生的可能性: 问题的: 复位事件E:r个人买东西: 事件Ei:文章i个人买东西: 的要求是P( E ...

  6. UVA 11181 Probability|Given (离散概率)

    题意:有n个人去商场,其中每个人都有一个打算买东西的概率P[i].问你最后r个人买了东西的情况下每个人买东西的概率 题解:一脸蒙蔽的题,之前的概率与之后的概率不一样??? 看了白书上的题解才知道了,其 ...

  7. 【UVA 11181】(条件概率)

    题链:https://cn.vjudge.net/problem/UVA-11181 题意 n个人去了超市,已知每个人买东西的概率为p[i],在已知有r个人买了东西的情况下,求实际上每个人买东西的概率 ...

  8. UVA - 11181 数学

    UVA - 11181 题意: n个人去买东西,其中第i个人买东西的概率是p[i],最后只有r个人买了东西,求每个人实际买了东西的概率 代码: //在r个人买东西的概率下每个人买了东西的概率,这是条件 ...

  9. uva 11346 - Probability(概率)

    option=com_onlinejudge&Itemid=8&page=show_problem&problem=2321">题目链接:uva 11346 - ...

随机推荐

  1. 搭建solr集群的时候出现 ./zkcli.sh:行13: unzip: 未找到命令

    主要的原因是: linux系统下面没有安装压缩解压工具    zip 和 unzip:需要我们自己手动的安装: 利用yum命令安装即可: yum install -y unzip zip

  2. 联想电脑硬盘保护系统EDU8.0.1iso安装

    管理306机房4年了,15年我带领的第一批学生参加吉林省职业院校技能大赛的时候,领导把这个机房交给我负责.那个时候这个机房的机器是全校的顶配,30台DELL16G内存,2T硬盘,I7处理器,后面是6组 ...

  3. Java - lastIndexOf() 方法

    此方法含头不含尾,如获取方法名 add 需要 +1

  4. P1481 魔族密码(LIS变形)

    题目描述(题目链接:https://www.luogu.org/problem/P1481) 风之子刚走进他的考场,就…… 花花:当当当当~~偶是魅力女皇——花花!!^^(华丽出场,礼炮,鲜花) 风之 ...

  5. 「NOIP2011」Mayan游戏

    传送门 Luogu 解题思路 爆搜,并考虑几个剪枝. 不交换颜色相同的方块(有争议,但是可以过联赛数据 \(Q \omega Q\)) 左边为空才往左换 右边不为空才往右换 因为对于两个相邻方块,右边 ...

  6. 1-4SpringBoot操作之Spring-Data-Jpa(一)

    Spring-Data-Jpa JPA(Java Persistence API)定义了一系列对象持久化的标准, 目前实现这一规范的产品有Hibernate.TopLink等. Spring Data ...

  7. 九:File类,文件的操作

    File的常用方法:

  8. postgres 删除外部表

    drop external table if exists tableName;

  9. 51nod 1163:最高的奖励 优先队列

    1163 最高的奖励 基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题  收藏  关注 有N个任务,每个任务有一个最晚结束时间以及一个对应的奖励.在结束时间之前完成该 ...

  10. mysql5.7修改账户密码

    一.首次登录时,修改root账户的密码: vim /etc/my.cnf 在末尾添加 skip-grant-tables ,保存. service mysqld restart 再次登录时,不需要密码 ...