Loj #2542. 「PKUWC2018」随机游走

题目描述

给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去。

有 \(Q\) 次询问,每次询问给定一个集合 \(S\),求如果从 \(x\) 出发一直随机游走,直到点集 \(S\) 中所有点都至少经过一次的话,期望游走几步。

特别地,点 \(x\)(即起点)视为一开始就被经过了一次。

答案对 $998244353 $ 取模。

输入格式

第一行三个正整数 \(n,Q,x\)。

接下来 \(n-1\) 行,每行两个正整数 \((u,v)\) 描述一条树边。

接下来 \(Q\) 行,每行第一个数 \(k\) 表示集合大小,接下来 \(k\) 个互不相同的数表示集合 \(S\)。

输出格式

输出 \(Q\) 行,每行一个非负整数表示答案。

数据范围与提示

对于 \(20\%\) 的数据,有 \(1\leq n,Q\leq 5\)。

另有 \(10\%\) 的数据,满足给定的树是一条链。

另有 \(10\%\) 的数据,满足对于所有询问有 \(k=1\)。

另有 \(30\%\) 的数据,满足 \(1\leq n\leq 10 ,Q=1\)。

对于 \(100\%\) 的数据,有 \(1\leq n\leq 18\),\(1\leq Q\leq 5000\),\(1\leq k\leq n\)。

Orz

首先根据\(\min-\max\) 反演我们知道:

\[\max(S)=\sum_{T\subseteq S}(-1)^{|T|-1}\min(T)
\]

设\(f_{v,S}\)表示从\(v\)出发,经过\(S\)中至少一个节点的期望步数。

如果\(v\in S\),\(f_{v,S}=0\),否则:

\[f_v=1+\frac{1}{d_v}f_{fa}+\frac{1}{d_v}\sum f(u)\\
\]

然后这是颗树,我们可以将\(DP\)方程移项变成只与\(fa\)的\(f\)值个一个常数有关。

设:

\[f(v)=A_v*f_{fa}+B_v\\
\]

带回去化简:

\[f_v=1+\frac{1}{d_v}f_{fa}+\frac{1}{d_v}\sum (A_u*f_v+B_u)\\
(d_v-\sum A_u)*f_v=d_v+f_{fa}+\sum B_u\\
f_v=\frac{1}{d_v-\sum A_u}*f_{fa}+\frac{d_v+\sum B_u}{d_v-\sum A_u}
\]

得到:

\[A_v=\frac{1}{d_v-\sum A_u},B_v=\frac{d_v+\sum B_u}{d_v-\sum A_u}
\]

代码:

#include<bits/stdc++.h>
#define ll long long
#define N 19 using namespace std;
inline int Get() {int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}while('0'<=ch&&ch<='9') {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}return x*f;} const ll mod=998244353;
ll ksm(ll t,ll x) {
ll ans=1;
for(;x;x>>=1,t=t*t%mod)
if(x&1) ans=ans*t%mod;
return ans;
} int n;
int X,m;
struct road {int to,nxt;}s[N<<1];
int h[N],cnt;
void add(int i,int j) {s[++cnt]=(road) {j,h[i]};h[i]=cnt;} ll w[N];
int d[N];
ll A[N],B[N],f[N];
int tag[N]; void dfs(int v,int fa) {
A[v]=B[v]=0;
ll sumA=0,sumB=0;
for(int i=h[v];i;i=s[i].nxt) {
int to=s[i].to;
if(to==fa) continue ;
dfs(to,v);
sumA=(sumA+A[to])%mod;
sumB=(sumB+B[to])%mod;
}
if(tag[v]) A[v]=B[v]=0;
else A[v]=ksm(d[v]-sumA+mod,mod-2),B[v]=(d[v]+sumB)*ksm(d[v]-sumA+mod,mod-2)%mod;
} void dfs2(int v,int fa) {
f[v]=(A[v]*f[fa]+B[v])%mod;
for(int i=h[v];i;i=s[i].nxt) {
int to=s[i].to;
if(to==fa) continue ;
dfs2(to,v);
}
}
int mn[1<<N];
int main() {
n=Get(),m=Get(),X=Get();
int a,b;
for(int i=1;i<n;i++) {
a=Get(),b=Get();
add(a,b),add(b,a);
d[a]++,d[b]++;
}
for(int S=1;S<1<<n;S++) {
for(int i=1;i<=n;i++) if(S>>i-1&1) tag[i]=1;
dfs(1,0),dfs2(1,0);
mn[S]=f[X];
for(int i=1;i<=n;i++) if(S>>i-1&1) tag[i]=0;
}
for(int S=1;S<1<<n;S++) {
int cnt=0;
for(int i=0;i<n;i++) cnt+=S>>i&1;
if(!(cnt&1)) mn[S]=(mod-mn[S])%mod;
}
for(int i=0;i<n;i++) {
for(int S=1;S<1<<n;S++) {
if(S>>i&1) mn[S]=(mn[S]+mn[S^(1<<i)]+mod)%mod;
}
}
while(m--) {
int k=Get();
int sta=0;
while(k--) sta|=1<<Get()-1;
cout<<mn[sta]<<"\n";
}
return 0;
}

Loj #2542. 「PKUWC2018」随机游走的更多相关文章

  1. LOJ #2542「PKUWC2018」随机游走

    $ Min$-$Max$容斥真好用 $ PKUWC$滚粗后这题一直在$ todolist$里 今天才补掉..还要更加努力啊.. LOJ #2542 题意:给一棵不超过$ 18$个节点的树,$ 5000 ...

  2. loj#2542. 「PKUWC2018」随机游走(树形dp+Min-Max容斥)

    传送门 首先,关于\(Min-Max\)容斥 设\(S\)为一个点的集合,每个点的权值为走到这个点的期望时间,则\(Max(S)\)即为走遍这个集合所有点的期望时间,\(Min(S)\)即为第一次走到 ...

  3. LOJ 2542 「PKUWC2018」随机游走 ——树上高斯消元(期望DP)+最值反演+fmt

    题目:https://loj.ac/problem/2542 可以最值反演.注意 min 不是独立地算从根走到每个点的最小值,在点集里取 min ,而是整体来看,“从根开始走到点集中的任意一个点就停下 ...

  4. loj#2542. 「PKUWC2018」随机游走(MinMax容斥 期望dp)

    题意 题目链接 Sol 考虑直接对询问的集合做MinMax容斥 设\(f[i][sta]\)表示从\(i\)到集合\(sta\)中任意一点的最小期望步数 按照树上高斯消元的套路,我们可以把转移写成\( ...

  5. 【LOJ】#2542. 「PKUWC2018」随机游走

    题解 虽然我知道minmax容斥,但是--神仙能想到把这个dp转化成一个一次函数啊= = 我们相当于求给定的\(S\)集合里最后一个被访问到的点的时间,对于这样的max的问题,我们可以用容斥把它转化成 ...

  6. LOJ2542. 「PKUWC2018」随机游走

    LOJ2542. 「PKUWC2018」随机游走 https://loj.ac/problem/2542 分析: 为了学习最值反演而做的这道题~ \(max{S}=\sum\limits_{T\sub ...

  7. 「PKUWC2018」随机游走(min-max容斥+FWT)

    「PKUWC2018」随机游走(min-max容斥+FWT) 以后题目都换成这种「」形式啦,我觉得好看. 做过重返现世的应该看到就想到 \(min-max\) 容斥了吧. 没错,我是先学扩展形式再学特 ...

  8. 「PKUWC2018」随机游走

    题目 我暴力过啦 看到这样的东西我们先搬出来\(min-max\)容斥 我们设\(max(S)\)表示\(x\)到达点集\(S\)的期望最晚时间,也就是我们要求的答案了 显然我们也很难求出这个东西,但 ...

  9. loj2542「PKUWC2018」随机游走

    题目描述 给定一棵 nn 个结点的树,你从点 xx 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 QQ 次询问,每次询问给定一个集合 SS,求如果从 xx 出发一直随机游走,直到点集 SS ...

随机推荐

  1. 【机器学习篇】--SVD从初始到应用

    SVD一般应用场景--推荐系统,图像压缩. 1.直观感受. SVD其实就是将矩阵分界,直观感受如图.就是将A矩阵分界成U,S,V三个矩阵相乘.一般推荐系统中用的多.S是对角阵,里面的特征值是从大到小排 ...

  2. 一个请求过来都经过了什么?(Thrift版)

    一.背景 最初遇到这个问题是去58面试.部门领导是原同事,所以面试比较水.水到什么程度呢? 面试就是走个形式而已,不会不过的. 一面面试官就问了一个问题:“一个请求过来都经过了什么?”  剩下的全是闲 ...

  3. 用python读文件如.c文件生成excel文件

    记录一下,如何实现的,代码如下: #!/usr/bin/env python # coding=utf-8 # 打开文件 import xlwt import re import sys bookfi ...

  4. 每周分享五个 PyCharm 使用技巧(一)

    PyCharm 是大多数 Python 开发者的首选 IDE,每天我们都在上面敲着熟悉的代码,写出一个又一个奇妙的功能. 一个每天都在使用的工具,如果能掌握一些高效的使用技巧,肯定会给我们的开发效率带 ...

  5. C# 默认访问权限

    声明类.方法.字段.属性时不加访问权限修饰符时的访问权限是什么呢?1. 声明命名空间.类,前面不加限制访问修饰符时,默认访问权限为internal——访问仅限于当前程序集. 2. 声明类成员(域.属性 ...

  6. Servlet_note

    2015/8/24 Web项目目录结构:总目录my,中有WEB-INF目录,中有classes.lib两目录和web.xml文件.classes保存编译好的java文件,lib保存库文件,web.xm ...

  7. OGNL详解

    A.什么是OGNL? 全称叫ObjectGraphic Navigation Language(对象图导航语言),它是struts2框架里面的第三方语言(即可以再别的地方用,struts2只是拿过来了 ...

  8. 调用链监控 CAT 之 URL埋点实践

    URL监控埋点作用 一个http请求来了之后,会自动打点,能够记录每个url的访问情况,并将以此请求后续的调用链路串起来,可以在cat上查看logview 可以在cat Transaction及Eve ...

  9. 重写Ext中的typeOf函数

    重写Ext中的typeOf函数来解决Ext JS中typeOf对字符串对象.元素节点.文本节点.空白文本节点判断并不准确的问题 重写的typeOf函数使用自己实现的TypeOf函数2中的代码 测试代码 ...

  10. vue+原生JavaScript实现slideDown与slideUp[简单思路]

    整个代码如下: <template> <div style="width:400px;margin:100px auto;"> <div class= ...