传送门

题意:

一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数。例如S={1,1,1,4,13},
8无法表示为集合S的子集的和,故集合S的神秘数为8。
现给定n个正整数a[1]..a[n],m个询问,每次询问给定一个区间[l,r](l<=r),求由a[l],a[l+1],…,a[r]所构成的可重复数字集合的神秘数。


咦,神秘数好熟悉啊

最优集合?

那么如何求神秘数就很清楚了,当前$now$,就找$\le now+1$的数

询问区间?难道用主席树嘛

然后看了下题解 发现的确是主席树,每次$\le now$前缀和看看能不能$+1 \ge now$来更新$now$

复杂度?

之前和现在为$a,b$,下次必定加上$a<\ <b$的数。最多$O(log\sum a)$次

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
#define lc(x) t[x].l
#define rc(x) t[x].r
typedef long long ll;
const int N=1e5+;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int n,Q,a[N],mp[N],m;
inline void inimp(){
sort(mp+,mp++m);
int p=; mp[++p]=mp[];
for(int i=;i<=m;i++) if(mp[i]!=mp[i-]) mp[++p]=mp[i];
m=p;
}
inline int Bin(int v){
int l=,r=m;
while(l<=r){
int mid=(l+r)>>;
if(v==mp[mid]) return mid;
else if(v<mp[mid]) r=mid-;
else l=mid+;
}
return ;
}
struct Node{
int l,r,sum;
}t[N*];
int root[N],sz;
void fIns(int &x,int l,int r,int p){//printf("ins %d %d %d %d\n",x,l,r,p);
t[++sz]=t[x];x=sz;
t[x].sum+=mp[p];
if(l==r) return;
int mid=(l+r)>>;
if(p<=mid) fIns(lc(x),l,mid,p);
else fIns(rc(x),mid+,r,p);
}
int fQue(int x,int y,int l,int r,int ql,int qr){//printf("que %d %d %d %d %d %d\n",x,y,mp[l],mp[r],ql,qr);if(l==4 && r==4 && qr==8) return 0;
if(qr<mp[l] || ql>mp[r]) return ;
if(ql<=mp[l]&&mp[r]<=qr) return t[y].sum-t[x].sum;
else{
int re=,mid=(l+r)>>;
if(ql<=mp[mid]) re+=fQue(lc(x),lc(y),l,mid,ql,qr);
if(mp[mid]<qr) re+=fQue(rc(x),rc(y),mid+,r,ql,qr);
return re;
}
} int main(){
//freopen("in","r",stdin);
n=read();
for(int i=;i<=n;i++) a[i]=mp[++m]=read();
inimp();
//for(int i=1;i<=n;i++) printf("a %d %d\n",a[i],Bin(a[i]));
for(int i=;i<=n;i++) a[i]=Bin(a[i]),root[i]=root[i-],fIns(root[i],,m,a[i]);//puts("endIns");
Q=read();
while(Q--){
int l=read(),r=read();
int now=;
while(true){
int _=fQue(root[l-],root[r],,m,,now);
if(_<now) break;
else now=_+;
}
printf("%d\n",now);
}
}

BZOJ 4408: [Fjoi 2016]神秘数 [主席树]的更多相关文章

  1. BZOJ 4408: [Fjoi 2016]神秘数 主席树 + 神题

    Code: #include<bits/stdc++.h> #define lson ls[x] #define mid ((l+r)>>1) #define rson rs[ ...

  2. Bzoj 4408: [Fjoi 2016]神秘数 可持久化线段树,神题

    4408: [Fjoi 2016]神秘数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 177  Solved: 128[Submit][Status ...

  3. BZOJ 4408: [Fjoi 2016]神秘数 可持久化线段树

    4408: [Fjoi 2016]神秘数 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4408 Description 一个可重复数字集 ...

  4. BZOJ 4408: [Fjoi 2016]神秘数

    4408: [Fjoi 2016]神秘数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 464  Solved: 281[Submit][Status ...

  5. bzoj 4408: [Fjoi 2016]神秘数 数学 可持久化线段树 主席树

    https://www.lydsy.com/JudgeOnline/problem.php?id=4299 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1 ...

  6. ●BZOJ 4408 [Fjoi 2016]神秘数

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4408 题解: 主席树 首先,对于一些数来说, 如果可以我们可以使得其中的某些数能够拼出 1- ...

  7. BZOJ4408&4299[Fjoi 2016]神秘数——主席树

    题目描述 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13},1 = 1 2 = 1+1 3 = 1+1+1 4 = 4 5 = 4+1 6 = ...

  8. 【bzoj4408】[Fjoi 2016]神秘数 主席树

    题目描述 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13},1 = 12 = 1+13 = 1+1+14 = 45 = 4+16 = 4+1+1 ...

  9. 4408: [Fjoi 2016]神秘数

    4408: [Fjoi 2016]神秘数 Time Limit: 10 Sec  Memory Limit: 128 MB Submit: 452  Solved: 273 [Submit][Stat ...

随机推荐

  1. Springboot-shiro-redis实现登录认证和权限管理

    Springboot-shiro-redis实现登录认证和权限管理 在学习之前: 首先进行一下Apache Shiro和Shiro比较: Apache Shiro是一个功能强大.灵活的,开源的安全框架 ...

  2. c++(八皇后)

    八皇后是一道很具典型性的题目.它的基本要求是这样的:在一个8*8的矩阵上面放置8个物体,一个矩阵点只允许放置一个物体,任意两个点不能在一行上,也不能在一列上,不能在一条左斜线上,当然也不能在一条右斜线 ...

  3. 将电脑文件复制到vm虚拟机中,然后安装步骤

    [root@lixiaohu 桌面]# cp openssl-1.0.1f.tar.gz /usr/src     /usr/src  这是复制到的路径[root@lixiaohu 桌面]# cd / ...

  4. Dev中GridControl的导出Excel设置

    接上篇 Dev中GridControl的GridView 基本样式设置 上图: 导出部分的代码: /// <summary> /// 导出excel /// </summary> ...

  5. Oracle_多行函数

      Oracle_多行函数   多行函数min(),max(),count(),sum(),avg() --1.1统计公司的最高工资,最低工资和总人数 --对于null值直接略过,不做运算 --max ...

  6. 从零开始学习前端开发 — 17、CSS3背景与渐变

    一.css3背景切割: background-clip:border-box|padding-box|content-box; 作用: 用来设置背景的可见区域 a) border-box 默认值,背景 ...

  7. 启动tomcat时,一直卡在Deploying web application directory这块的解决方案

    本来今天正常往服务器上扔一个tomcat 部署一个项目的, 最后再启动tomcat 的时候 发现项目一直都访问不了,看了一下日志: [root@iz8vbdzx7y7owm488t4d89z bin] ...

  8. Python3 的函数

    1.编写power(x,y)函数返回x的y次幂值 def power(x,y): return x**y 2.求最大公约数 def gcd(x,y): r=x%y x=y y=r if r==0: p ...

  9. Tomcat下的Server.xml配置文件详解

    自15年毕业到现在已经入行两年多了,一直以来没有深入的了解过tomcat的详细配置,只懂修改一下端口号.在网上找了些相关资料来支撑这篇文章,深入了解server.xml文件各配置的作用 <?xm ...

  10. Java数据持久层框架 MyBatis之API学习九(SQL语句构建器详解)

    对于MyBatis的学习而言,最好去MyBatis的官方文档:http://www.mybatis.org/mybatis-3/zh/index.html 对于语言的学习而言,马上上手去编程,多多练习 ...