Background

Problems that require minimum paths through some domain appear in many different areas of computer science. For example, one of the constraints in VLSI routing problems is minimizing wire length. The Traveling Salesperson
Problem (TSP) -- finding whether all the cities in a salesperson's route can be visited exactly once with a specified limit on travel time -- is one of the canonical examples of an NP-complete problem; solutions appear to require an inordinate amount of time
to generate, but are simple to check.

This problem deals with finding a minimal path through a grid of points while traveling only from left to right.

The Problem

Given an  matrix of integers, you are to write a program that computes a path of
minimal weight. A path starts anywhere in column 1 (the first column) and consists of a sequence of steps terminating in column n (the last column). A step consists of traveling from column i to column i+1 in an adjacent (horizontal
or diagonal) row. The first and last rows (rows 1 and m) of a matrix are considered adjacent, i.e., the matrix ``wraps'' so that it represents a horizontal cylinder. Legal steps are illustrated below.

The weight of a path is the sum of the integers in each of the n cells of the matrix that are visited.

For example, two slightly different  matrices are shown below (the only difference
is the numbers in the bottom row).

The minimal path is illustrated for each matrix. Note that the path for the matrix on the right takes advantage of the adjacency property of the first and last rows.

The Input

The input consists of a sequence of matrix specifications. Each matrix specification consists of the row and column dimensions in that order on a line followed by  integers
where m is the row dimension and n is the column dimension. The integers appear in the input in row major order, i.e., the first n integers constitute the first row of the matrix, the second n integers constitute the second
row and so on. The integers on a line will be separated from other integers by one or more spaces. Note: integers are not restricted to being positive. There will be one or more matrix specifications in an input file. Input is terminated by end-of-file.

For each specification the number of rows will be between 1 and 10 inclusive; the number of columns will be between 1 and 100 inclusive. No path's weight will exceed integer values representable using 30 bits.

The Output

Two lines should be output for each matrix specification in the input file, the first line represents a minimal-weight path, and the second line is the cost of a minimal path. The path consists of a sequence of nintegers
(separated by one or more spaces) representing the rows that constitute the minimal path. If there is more than one path of minimal weight the path that is lexicographically smallest should be output.

Sample Input

5 6
3 4 1 2 8 6
6 1 8 2 7 4
5 9 3 9 9 5
8 4 1 3 2 6
3 7 2 8 6 4
5 6
3 4 1 2 8 6
6 1 8 2 7 4
5 9 3 9 9 5
8 4 1 3 2 6
3 7 2 1 2 3
2 2
9 10 9 10

Sample Output

1 2 3 4 4 5
16
1 2 1 5 4 5
11
1 1
19

动态规划问题,倒着找一遍即可,不过这个要输出结果,所以需要记录下结果。不过AC了之后等级不高,速度稍慢。

AC代码:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cctype>
#include <cstring>
#include <string>
#include <sstream>
#include <vector>
#include <set>
#include <map>
#include <algorithm>
#include <stack>
#include <queue>
#include <bitset>
#include <cassert>
#include <cmath>
#include <functional>

using namespace std;

const int maxm = 12;
const int maxn = 105;
const int inf = 0x3f3f3f3f;

int matrix[maxm][maxn], nextLine[maxm][maxn];
int d[maxm][maxn]; // d[i][j]表示从格子(i, j)出发到最后一列的最小开销
int m, n;

void init()
{
	cin >> n;
	for (int i = 0; i < m; i++) {
		for (int j = 0; j < n; j++) {
			cin >> matrix[i][j];
		}
	}
}

// 动态规划。。。
void solve()
{
	int ans = inf, first = 0;
	for (int j = n - 1; j >= 0; j--) { // 逆推
		for (int i = 0; i < m; i++) {
			if (j == n - 1) { // 边界
				d[i][j] = matrix[i][j];
			}
			else {
				int row[3] = { i, i - 1, i + 1 };
				if (i == 0) {
					row[1] = m - 1; // 第0行上面是第m-1行
				}
				if (i == m - 1) {
					row[2] = 0; // 第m-1行下面是第0行
				}
				sort(row, row + 3); // 重排序是为了得到字典序最小的
				d[i][j] = inf;
				for (int k = 0; k < 3; k++) { // 向左走,判断那个比较小
					int v = d[row[k]][j + 1] + matrix[i][j];
					if (v < d[i][j]) {
						d[i][j] = v;
						nextLine[i][j] = row[k];
					}
				}
			}
			if (j == 0 && d[i][j] < ans) {
				ans = d[i][j];
				first = i;
			}
		}
	}
	// 输出
	cout << first + 1;
	for (int i = nextLine[first][0], j = 1; j < n; i = nextLine[i][j], j++) {
		cout << ' ' << i + 1;
	}
	cout << endl << ans << endl;
}

int main()
{
	ios::sync_with_stdio(false);
	while (cin >> m) {
		init();
		solve();
	}

	return 0;
}

UVa - 116 - Unidirectional TSP的更多相关文章

  1. uva 116 Unidirectional TSP (DP)

    uva 116 Unidirectional TSP Background Problems that require minimum paths through some domain appear ...

  2. uva 116 Unidirectional TSP【号码塔+打印路径】

    主题: uva 116 Unidirectional TSP 意甲冠军:给定一个矩阵,当前格儿童值三个方向回格最小值和当前的和,就第一列的最小值并打印路径(同样则去字典序最小的). 分析:刚開始想错了 ...

  3. UVA 116 Unidirectional TSP(dp + 数塔问题)

     Unidirectional TSP  Background Problems that require minimum paths through some domain appear in ma ...

  4. UVA 116 Unidirectional TSP(DP最短路字典序)

    Description    Unidirectional TSP  Background Problems that require minimum paths through some domai ...

  5. UVA 116 Unidirectional TSP 经典dp题

    题意:找最短路,知道三种行走方式,给出图,求出一条从左边到右边的最短路,且字典序最小. 用dp记忆化搜索的思想来考虑是思路很清晰的,但是困难在如何求出字典序最小的路. 因为左边到右边的字典序最小就必须 ...

  6. UVa 116 Unidirectional TSP (DP)

    该题是<算法竞赛入门经典(第二版)>的一道例题,难度不算大.我先在没看题解的情况下自己做了一遍,虽然最终通过了,思路与书上的也一样.但比书上的代码复杂了很多,可见自己对问题的处理还是有所欠 ...

  7. UVA - 116 Unidirectional TSP 多段图的最短路 dp

    题意 略 分析 因为字典序最小,所以从后面的列递推,每次对上一列的三个方向的行排序就能确保,数字之和最小DP就完事了 代码 因为有个地方数组名next和里面本身的某个东西冲突了,所以编译错了,后来改成 ...

  8. uva 116 - Unidirectional TSP (动态规划)

    第一次做动规题目,下面均为个人理解以及个人方法,状态转移方程以及状态的定义也是依据个人理解.请过路大神不吝赐教. 状态:每一列的每个数[ i ][ j ]都是一个状态: 然后定义状态[ i ][ j ...

  9. uva 116 Unidirectional TSP(动态规划,多段图上的最短路)

    这道题目并不是很难理解,题目大意就是求从第一列到最后一列的一个字典序最小的最短路,要求不仅输出最短路长度,还要输出字典序最小的路径. 这道题可以利用动态规划求解.状态定义为: cost[i][j] = ...

随机推荐

  1. Win7 环境下虚拟机内 Samba 服务器的安装、配置以及与主机的通信实现

    考虑到window和linux虚拟机之间互传文件较为麻烦,遂打算在虚拟机中安装Samba服务器,以此实现共享文件给window使用.然而安装配置过程曲折,遂作记录如下: 一.samba服务器的安装 正 ...

  2. ThreadLocal 遇上线程池的问题及解决办法

    ThreadLocal 称为线程本地存储,它为每一个使用它的线程提供一个其值(value)的副本.可以将 ThreadLocal<T> 理解成 Map<Thread, T>,即 ...

  3. Java中使用long类型实现精确的四则运算

    引子 Effective Java 2nd Edition 第48条建议:如果需要精确的答案,请避免使用float和doble.float和double类型主要是为了科学计算和工程计算而设计的.他们执 ...

  4. RX系列一 | ReactiveX根源 | 观察者模式分析

    RX系列一 | ReactiveX根源 | 观察者模式分析 Rx的响应式编程算是很火了,对吧,但是我的工作基本上就不会接触,所以学习的比较晚,到现在才分享给大家,我们一点点的去学,当你看完这整个系列的 ...

  5. 周口网视界易付点卡销售平台招商中 www.zkpay.cn 欢迎各界朋友加盟合作。

    周口网视界易付点卡销售平台针对全国各地网吧及游戏点卡代理招商中. http://www.zkpay.cn   腾讯新的游戏点卡销售平台,平台价优稳定,这个是老家朋友开的公司,欢迎全国各地网吧客户及游戏 ...

  6. IT男的别样人生,爱折腾,竟然辞职跑丽江去了

    深圳待了4年,在深圳腾讯总部任职,北漂了5年多,任某知名团购公司CTO,有了孩子以后才知道自己想要什么 2015年4月,我和老婆还有6个月的儿子丽江游, 却在旅行的第四天, 买下了位于束河古镇正门的高 ...

  7. Maven 核心原理

    Maven 核心原理 标签 : Java基础 Maven 是每一位Java工程师每天都会接触的工具, 但据我所知其实很多人对Maven理解的并不深, 只把它当做一个依赖管理工具(下载依赖.打包), M ...

  8. Web自动化框架LazyUI使用手册(3)--单个xpath抓取插件详解(selenium元素抓取,有此插件,便再无所求!)

    概述 前面的一篇博文粗略介绍了基于lazyUI的第一个demo,本文将详细描述此工具的设计和使用. 元素获取插件:LazyUI Elements Extractor,作为Chrome插件,用于抓取页面 ...

  9. EBS开发技术之trace

    trace的目的 trace主要是用于程序调优,优化,程序bug调试,程序运行系统情况跟踪 trace步骤 1.并发定义中,勾上"启用跟踪" 2.提交一个请求,得到请求编号 注意: ...

  10. android拍照获得图片及获得图片后剪切设置到ImageView

    ok,这次的项目需要用到设置头像功能,所以做了个总结,直接进入主题吧. 先说说怎么 使用android内置的相机拍照然后获取到这张照片吧 直接上代码: Intent intentFromCapture ...