UVa - 116 - Unidirectional TSP
Background
Problems that require minimum paths through some domain appear in many different areas of computer science. For example, one of the constraints in VLSI routing problems is minimizing wire length. The Traveling Salesperson
Problem (TSP) -- finding whether all the cities in a salesperson's route can be visited exactly once with a specified limit on travel time -- is one of the canonical examples of an NP-complete problem; solutions appear to require an inordinate amount of time
to generate, but are simple to check.
This problem deals with finding a minimal path through a grid of points while traveling only from left to right.
The Problem
Given an
matrix of integers, you are to write a program that computes a path of
minimal weight. A path starts anywhere in column 1 (the first column) and consists of a sequence of steps terminating in column n (the last column). A step consists of traveling from column i to column i+1 in an adjacent (horizontal
or diagonal) row. The first and last rows (rows 1 and m) of a matrix are considered adjacent, i.e., the matrix ``wraps'' so that it represents a horizontal cylinder. Legal steps are illustrated below.

The weight of a path is the sum of the integers in each of the n cells of the matrix that are visited.
For example, two slightly different
matrices are shown below (the only difference
is the numbers in the bottom row).

The minimal path is illustrated for each matrix. Note that the path for the matrix on the right takes advantage of the adjacency property of the first and last rows.
The Input
The input consists of a sequence of matrix specifications. Each matrix specification consists of the row and column dimensions in that order on a line followed by
integers
where m is the row dimension and n is the column dimension. The integers appear in the input in row major order, i.e., the first n integers constitute the first row of the matrix, the second n integers constitute the second
row and so on. The integers on a line will be separated from other integers by one or more spaces. Note: integers are not restricted to being positive. There will be one or more matrix specifications in an input file. Input is terminated by end-of-file.
For each specification the number of rows will be between 1 and 10 inclusive; the number of columns will be between 1 and 100 inclusive. No path's weight will exceed integer values representable using 30 bits.
The Output
Two lines should be output for each matrix specification in the input file, the first line represents a minimal-weight path, and the second line is the cost of a minimal path. The path consists of a sequence of nintegers
(separated by one or more spaces) representing the rows that constitute the minimal path. If there is more than one path of minimal weight the path that is lexicographically smallest should be output.
Sample Input
5 6 3 4 1 2 8 6 6 1 8 2 7 4 5 9 3 9 9 5 8 4 1 3 2 6 3 7 2 8 6 4 5 6 3 4 1 2 8 6 6 1 8 2 7 4 5 9 3 9 9 5 8 4 1 3 2 6 3 7 2 1 2 3 2 2 9 10 9 10
Sample Output
1 2 3 4 4 5 16 1 2 1 5 4 5 11 1 1 19
动态规划问题,倒着找一遍即可,不过这个要输出结果,所以需要记录下结果。不过AC了之后等级不高,速度稍慢。
AC代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cctype>
#include <cstring>
#include <string>
#include <sstream>
#include <vector>
#include <set>
#include <map>
#include <algorithm>
#include <stack>
#include <queue>
#include <bitset>
#include <cassert>
#include <cmath>
#include <functional>
using namespace std;
const int maxm = 12;
const int maxn = 105;
const int inf = 0x3f3f3f3f;
int matrix[maxm][maxn], nextLine[maxm][maxn];
int d[maxm][maxn]; // d[i][j]表示从格子(i, j)出发到最后一列的最小开销
int m, n;
void init()
{
cin >> n;
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
cin >> matrix[i][j];
}
}
}
// 动态规划。。。
void solve()
{
int ans = inf, first = 0;
for (int j = n - 1; j >= 0; j--) { // 逆推
for (int i = 0; i < m; i++) {
if (j == n - 1) { // 边界
d[i][j] = matrix[i][j];
}
else {
int row[3] = { i, i - 1, i + 1 };
if (i == 0) {
row[1] = m - 1; // 第0行上面是第m-1行
}
if (i == m - 1) {
row[2] = 0; // 第m-1行下面是第0行
}
sort(row, row + 3); // 重排序是为了得到字典序最小的
d[i][j] = inf;
for (int k = 0; k < 3; k++) { // 向左走,判断那个比较小
int v = d[row[k]][j + 1] + matrix[i][j];
if (v < d[i][j]) {
d[i][j] = v;
nextLine[i][j] = row[k];
}
}
}
if (j == 0 && d[i][j] < ans) {
ans = d[i][j];
first = i;
}
}
}
// 输出
cout << first + 1;
for (int i = nextLine[first][0], j = 1; j < n; i = nextLine[i][j], j++) {
cout << ' ' << i + 1;
}
cout << endl << ans << endl;
}
int main()
{
ios::sync_with_stdio(false);
while (cin >> m) {
init();
solve();
}
return 0;
}
UVa - 116 - Unidirectional TSP的更多相关文章
- uva 116 Unidirectional TSP (DP)
uva 116 Unidirectional TSP Background Problems that require minimum paths through some domain appear ...
- uva 116 Unidirectional TSP【号码塔+打印路径】
主题: uva 116 Unidirectional TSP 意甲冠军:给定一个矩阵,当前格儿童值三个方向回格最小值和当前的和,就第一列的最小值并打印路径(同样则去字典序最小的). 分析:刚開始想错了 ...
- UVA 116 Unidirectional TSP(dp + 数塔问题)
Unidirectional TSP Background Problems that require minimum paths through some domain appear in ma ...
- UVA 116 Unidirectional TSP(DP最短路字典序)
Description Unidirectional TSP Background Problems that require minimum paths through some domai ...
- UVA 116 Unidirectional TSP 经典dp题
题意:找最短路,知道三种行走方式,给出图,求出一条从左边到右边的最短路,且字典序最小. 用dp记忆化搜索的思想来考虑是思路很清晰的,但是困难在如何求出字典序最小的路. 因为左边到右边的字典序最小就必须 ...
- UVa 116 Unidirectional TSP (DP)
该题是<算法竞赛入门经典(第二版)>的一道例题,难度不算大.我先在没看题解的情况下自己做了一遍,虽然最终通过了,思路与书上的也一样.但比书上的代码复杂了很多,可见自己对问题的处理还是有所欠 ...
- UVA - 116 Unidirectional TSP 多段图的最短路 dp
题意 略 分析 因为字典序最小,所以从后面的列递推,每次对上一列的三个方向的行排序就能确保,数字之和最小DP就完事了 代码 因为有个地方数组名next和里面本身的某个东西冲突了,所以编译错了,后来改成 ...
- uva 116 - Unidirectional TSP (动态规划)
第一次做动规题目,下面均为个人理解以及个人方法,状态转移方程以及状态的定义也是依据个人理解.请过路大神不吝赐教. 状态:每一列的每个数[ i ][ j ]都是一个状态: 然后定义状态[ i ][ j ...
- uva 116 Unidirectional TSP(动态规划,多段图上的最短路)
这道题目并不是很难理解,题目大意就是求从第一列到最后一列的一个字典序最小的最短路,要求不仅输出最短路长度,还要输出字典序最小的路径. 这道题可以利用动态规划求解.状态定义为: cost[i][j] = ...
随机推荐
- Docker端口映射实现
默认情况下,容器可以主动访问到外部网络的连接,但是外部网络无法访问到容器. 容器访问外部实现 容器所有到外部网络的连接,源地址都会被NAT成本地系统的IP地址.这是使用 iptables 的源地址伪装 ...
- SQL Server AlwaysON从入门到进阶(3)——基础架构
本文属于SQL Server AlwaysON从入门到进阶系列文章 前言: 本文将更加深入地讲解WSFC所需的核心组件.由于AlwaysOn和FCI都需要基于WSFC之上,因此我们首先要了解在Wind ...
- proc文件系统探索 之 根目录下的文件[1]
2.1根目录下的文件2.1.1lock文件内核锁,记录与被打开的文件有关的锁信息. 该文件显示当前被内核锁定的文件.该文件包含的内容是内核调试数据,根据使用的系统的这些数据会变化很大.一个/proc/ ...
- Most Common Solutions to FRM-41839 and .tmp Files Not Being Deleted
In this Document Symptoms Changes Cause Solution References APPLIES TO: Oracle Application ...
- Android图表库MPAndroidChart(七)—饼状图可以再简单一点
Android图表库MPAndroidChart(七)-饼状图可以再简单一点 接上文,今天实现的是用的很多的,作用在统计上的饼状图,我们看下今天的效果 这个效果,我们实现,和之前一样的套路,我先来说下 ...
- 在Mac上搭建React Native开发环境
概述 前面我们介绍过在window环境下开发React Native项目,今天说说怎么在mac上搭建一个RN的开发环境. 配置mac开发环境 基本环境安装 1.先安装Homebrew:用于安装Node ...
- Scikit-learn:主要模块和基本使用方法
http://blog.csdn.net/pipisorry/article/details/52128222 scikit-learn: Machine Learning in Python.sci ...
- not in 前面/后面存在null值时的处理
表声明 order_header表中有ship_method列: ship_method_map表中ship_method为主键列. 需求 找出order_header表中所有ship_method不 ...
- 剑指Offer——乐视笔试题+知识点总结
剑指Offer--乐视笔试题+知识点总结 情景回顾 时间:2016.9.19 15:10-17:10 地点:山东省网络环境智能计算技术重点实验室 事件:乐视笔试 总体来说,乐视笔试内容体量不算少, ...
- Mybatis源码分析之缓存
一.MyBatis缓存介绍 正如大多数持久层框架一样,MyBatis 同样提供了一级缓存和二级缓存的支持 一级缓存: 基于PerpetualCache 的 HashMap本地缓存,其存储作用域为 Se ...