Background

Problems that require minimum paths through some domain appear in many different areas of computer science. For example, one of the constraints in VLSI routing problems is minimizing wire length. The Traveling Salesperson
Problem (TSP) -- finding whether all the cities in a salesperson's route can be visited exactly once with a specified limit on travel time -- is one of the canonical examples of an NP-complete problem; solutions appear to require an inordinate amount of time
to generate, but are simple to check.

This problem deals with finding a minimal path through a grid of points while traveling only from left to right.

The Problem

Given an  matrix of integers, you are to write a program that computes a path of
minimal weight. A path starts anywhere in column 1 (the first column) and consists of a sequence of steps terminating in column n (the last column). A step consists of traveling from column i to column i+1 in an adjacent (horizontal
or diagonal) row. The first and last rows (rows 1 and m) of a matrix are considered adjacent, i.e., the matrix ``wraps'' so that it represents a horizontal cylinder. Legal steps are illustrated below.

The weight of a path is the sum of the integers in each of the n cells of the matrix that are visited.

For example, two slightly different  matrices are shown below (the only difference
is the numbers in the bottom row).

The minimal path is illustrated for each matrix. Note that the path for the matrix on the right takes advantage of the adjacency property of the first and last rows.

The Input

The input consists of a sequence of matrix specifications. Each matrix specification consists of the row and column dimensions in that order on a line followed by  integers
where m is the row dimension and n is the column dimension. The integers appear in the input in row major order, i.e., the first n integers constitute the first row of the matrix, the second n integers constitute the second
row and so on. The integers on a line will be separated from other integers by one or more spaces. Note: integers are not restricted to being positive. There will be one or more matrix specifications in an input file. Input is terminated by end-of-file.

For each specification the number of rows will be between 1 and 10 inclusive; the number of columns will be between 1 and 100 inclusive. No path's weight will exceed integer values representable using 30 bits.

The Output

Two lines should be output for each matrix specification in the input file, the first line represents a minimal-weight path, and the second line is the cost of a minimal path. The path consists of a sequence of nintegers
(separated by one or more spaces) representing the rows that constitute the minimal path. If there is more than one path of minimal weight the path that is lexicographically smallest should be output.

Sample Input

5 6
3 4 1 2 8 6
6 1 8 2 7 4
5 9 3 9 9 5
8 4 1 3 2 6
3 7 2 8 6 4
5 6
3 4 1 2 8 6
6 1 8 2 7 4
5 9 3 9 9 5
8 4 1 3 2 6
3 7 2 1 2 3
2 2
9 10 9 10

Sample Output

1 2 3 4 4 5
16
1 2 1 5 4 5
11
1 1
19

动态规划问题,倒着找一遍即可,不过这个要输出结果,所以需要记录下结果。不过AC了之后等级不高,速度稍慢。

AC代码:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cctype>
#include <cstring>
#include <string>
#include <sstream>
#include <vector>
#include <set>
#include <map>
#include <algorithm>
#include <stack>
#include <queue>
#include <bitset>
#include <cassert>
#include <cmath>
#include <functional>

using namespace std;

const int maxm = 12;
const int maxn = 105;
const int inf = 0x3f3f3f3f;

int matrix[maxm][maxn], nextLine[maxm][maxn];
int d[maxm][maxn]; // d[i][j]表示从格子(i, j)出发到最后一列的最小开销
int m, n;

void init()
{
	cin >> n;
	for (int i = 0; i < m; i++) {
		for (int j = 0; j < n; j++) {
			cin >> matrix[i][j];
		}
	}
}

// 动态规划。。。
void solve()
{
	int ans = inf, first = 0;
	for (int j = n - 1; j >= 0; j--) { // 逆推
		for (int i = 0; i < m; i++) {
			if (j == n - 1) { // 边界
				d[i][j] = matrix[i][j];
			}
			else {
				int row[3] = { i, i - 1, i + 1 };
				if (i == 0) {
					row[1] = m - 1; // 第0行上面是第m-1行
				}
				if (i == m - 1) {
					row[2] = 0; // 第m-1行下面是第0行
				}
				sort(row, row + 3); // 重排序是为了得到字典序最小的
				d[i][j] = inf;
				for (int k = 0; k < 3; k++) { // 向左走,判断那个比较小
					int v = d[row[k]][j + 1] + matrix[i][j];
					if (v < d[i][j]) {
						d[i][j] = v;
						nextLine[i][j] = row[k];
					}
				}
			}
			if (j == 0 && d[i][j] < ans) {
				ans = d[i][j];
				first = i;
			}
		}
	}
	// 输出
	cout << first + 1;
	for (int i = nextLine[first][0], j = 1; j < n; i = nextLine[i][j], j++) {
		cout << ' ' << i + 1;
	}
	cout << endl << ans << endl;
}

int main()
{
	ios::sync_with_stdio(false);
	while (cin >> m) {
		init();
		solve();
	}

	return 0;
}

UVa - 116 - Unidirectional TSP的更多相关文章

  1. uva 116 Unidirectional TSP (DP)

    uva 116 Unidirectional TSP Background Problems that require minimum paths through some domain appear ...

  2. uva 116 Unidirectional TSP【号码塔+打印路径】

    主题: uva 116 Unidirectional TSP 意甲冠军:给定一个矩阵,当前格儿童值三个方向回格最小值和当前的和,就第一列的最小值并打印路径(同样则去字典序最小的). 分析:刚開始想错了 ...

  3. UVA 116 Unidirectional TSP(dp + 数塔问题)

     Unidirectional TSP  Background Problems that require minimum paths through some domain appear in ma ...

  4. UVA 116 Unidirectional TSP(DP最短路字典序)

    Description    Unidirectional TSP  Background Problems that require minimum paths through some domai ...

  5. UVA 116 Unidirectional TSP 经典dp题

    题意:找最短路,知道三种行走方式,给出图,求出一条从左边到右边的最短路,且字典序最小. 用dp记忆化搜索的思想来考虑是思路很清晰的,但是困难在如何求出字典序最小的路. 因为左边到右边的字典序最小就必须 ...

  6. UVa 116 Unidirectional TSP (DP)

    该题是<算法竞赛入门经典(第二版)>的一道例题,难度不算大.我先在没看题解的情况下自己做了一遍,虽然最终通过了,思路与书上的也一样.但比书上的代码复杂了很多,可见自己对问题的处理还是有所欠 ...

  7. UVA - 116 Unidirectional TSP 多段图的最短路 dp

    题意 略 分析 因为字典序最小,所以从后面的列递推,每次对上一列的三个方向的行排序就能确保,数字之和最小DP就完事了 代码 因为有个地方数组名next和里面本身的某个东西冲突了,所以编译错了,后来改成 ...

  8. uva 116 - Unidirectional TSP (动态规划)

    第一次做动规题目,下面均为个人理解以及个人方法,状态转移方程以及状态的定义也是依据个人理解.请过路大神不吝赐教. 状态:每一列的每个数[ i ][ j ]都是一个状态: 然后定义状态[ i ][ j ...

  9. uva 116 Unidirectional TSP(动态规划,多段图上的最短路)

    这道题目并不是很难理解,题目大意就是求从第一列到最后一列的一个字典序最小的最短路,要求不仅输出最短路长度,还要输出字典序最小的路径. 这道题可以利用动态规划求解.状态定义为: cost[i][j] = ...

随机推荐

  1. Python教学相关资料

    Python教学调查链接 一.专题 1.绘图 如何开始使用Python来画图 Python画图总结 2.科学计算与数据分析 3.可视化 4.网络爬虫 5. 做笔记 Python-Jupyter Not ...

  2. flowable设计器插件安装

    原文地址:http://www.shareniu.com/ 工欲善其事必先利其器,要想使用flowable,必须搭建一套环境,本文以Eclipse中安装flowable插件为例详细说明整个安装过程. ...

  3. Android自定义View实战(SlideTab-可滑动的选择器)

    转载请标明出处: http://blog.csdn.net/xmxkf/article/details/52178553 本文出自:[openXu的博客] 目录: 初步分析重写onDraw绘制 重写o ...

  4. 【SSH系列】静态代理&&动态代理

    从设计模式说起 代理模式是二十三中设计模式中的一种,代理模式就是指由一个代理主题来操作真实的主题,真实的主题执行具体的业务操作,而代理主题负责其她相关业务,简而言之,代理模式可以由以下三个部分组成: ...

  5. Swift类中如何创建一个对外只读对内可读写的属性

    很简单用private修饰符,后面跟限制关键字set: class Day{ private(set) var rawValue:Int = 0 func showRawValue(){ print( ...

  6. PHP 针对多用户 实现头像更换

    成品图 思路 登陆页面 表单制作 验证码制作 JavaScript刷新验证码 验证页面 验证逻辑 页面跳转 header函数 Meta标签 JavaScript 上传页面 个人主页 上传核心 最终结果 ...

  7. springmvc注解形式的开发参数接收

    springmvc基于注解的开发 注解第一个例子 1. 创建web项目 springmvc-2 2. 在springmvc的配置文件中指定注解驱动,配置扫描器 <!-- sprimgmvc 注解 ...

  8. RxJava在Android中使用场景详解

    RxJava 系列文章 <一,RxJava create操作符的用法和源码分析> <二,RxJava map操作符用法详解> <三,RxJava flatMap操作符用法 ...

  9. <<精通iOS开发>>第14章例子代码小缺陷的修复

    大熊猫猪·侯佩原创或翻译作品.欢迎转载,转载请注明出处. 如果觉得写的不好请多提意见,如果觉得不错请多多支持点赞.谢谢! hopy ;) 首先推荐大家看这本书,整本书逻辑非常清晰,代码如何从无到有,到 ...

  10. 同步图计算:GraphLite的安装和使用

    http://blog.csdn.net/pipisorry/article/details/51350908 export HADOOP_HOME=/usr/local/hadoop-2.6.4ex ...