UVa - 116 - Unidirectional TSP
Background
Problems that require minimum paths through some domain appear in many different areas of computer science. For example, one of the constraints in VLSI routing problems is minimizing wire length. The Traveling Salesperson
Problem (TSP) -- finding whether all the cities in a salesperson's route can be visited exactly once with a specified limit on travel time -- is one of the canonical examples of an NP-complete problem; solutions appear to require an inordinate amount of time
to generate, but are simple to check.
This problem deals with finding a minimal path through a grid of points while traveling only from left to right.
The Problem
Given an
matrix of integers, you are to write a program that computes a path of
minimal weight. A path starts anywhere in column 1 (the first column) and consists of a sequence of steps terminating in column n (the last column). A step consists of traveling from column i to column i+1 in an adjacent (horizontal
or diagonal) row. The first and last rows (rows 1 and m) of a matrix are considered adjacent, i.e., the matrix ``wraps'' so that it represents a horizontal cylinder. Legal steps are illustrated below.

The weight of a path is the sum of the integers in each of the n cells of the matrix that are visited.
For example, two slightly different
matrices are shown below (the only difference
is the numbers in the bottom row).

The minimal path is illustrated for each matrix. Note that the path for the matrix on the right takes advantage of the adjacency property of the first and last rows.
The Input
The input consists of a sequence of matrix specifications. Each matrix specification consists of the row and column dimensions in that order on a line followed by
integers
where m is the row dimension and n is the column dimension. The integers appear in the input in row major order, i.e., the first n integers constitute the first row of the matrix, the second n integers constitute the second
row and so on. The integers on a line will be separated from other integers by one or more spaces. Note: integers are not restricted to being positive. There will be one or more matrix specifications in an input file. Input is terminated by end-of-file.
For each specification the number of rows will be between 1 and 10 inclusive; the number of columns will be between 1 and 100 inclusive. No path's weight will exceed integer values representable using 30 bits.
The Output
Two lines should be output for each matrix specification in the input file, the first line represents a minimal-weight path, and the second line is the cost of a minimal path. The path consists of a sequence of nintegers
(separated by one or more spaces) representing the rows that constitute the minimal path. If there is more than one path of minimal weight the path that is lexicographically smallest should be output.
Sample Input
5 6 3 4 1 2 8 6 6 1 8 2 7 4 5 9 3 9 9 5 8 4 1 3 2 6 3 7 2 8 6 4 5 6 3 4 1 2 8 6 6 1 8 2 7 4 5 9 3 9 9 5 8 4 1 3 2 6 3 7 2 1 2 3 2 2 9 10 9 10
Sample Output
1 2 3 4 4 5 16 1 2 1 5 4 5 11 1 1 19
动态规划问题,倒着找一遍即可,不过这个要输出结果,所以需要记录下结果。不过AC了之后等级不高,速度稍慢。
AC代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cctype>
#include <cstring>
#include <string>
#include <sstream>
#include <vector>
#include <set>
#include <map>
#include <algorithm>
#include <stack>
#include <queue>
#include <bitset>
#include <cassert>
#include <cmath>
#include <functional>
using namespace std;
const int maxm = 12;
const int maxn = 105;
const int inf = 0x3f3f3f3f;
int matrix[maxm][maxn], nextLine[maxm][maxn];
int d[maxm][maxn]; // d[i][j]表示从格子(i, j)出发到最后一列的最小开销
int m, n;
void init()
{
cin >> n;
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
cin >> matrix[i][j];
}
}
}
// 动态规划。。。
void solve()
{
int ans = inf, first = 0;
for (int j = n - 1; j >= 0; j--) { // 逆推
for (int i = 0; i < m; i++) {
if (j == n - 1) { // 边界
d[i][j] = matrix[i][j];
}
else {
int row[3] = { i, i - 1, i + 1 };
if (i == 0) {
row[1] = m - 1; // 第0行上面是第m-1行
}
if (i == m - 1) {
row[2] = 0; // 第m-1行下面是第0行
}
sort(row, row + 3); // 重排序是为了得到字典序最小的
d[i][j] = inf;
for (int k = 0; k < 3; k++) { // 向左走,判断那个比较小
int v = d[row[k]][j + 1] + matrix[i][j];
if (v < d[i][j]) {
d[i][j] = v;
nextLine[i][j] = row[k];
}
}
}
if (j == 0 && d[i][j] < ans) {
ans = d[i][j];
first = i;
}
}
}
// 输出
cout << first + 1;
for (int i = nextLine[first][0], j = 1; j < n; i = nextLine[i][j], j++) {
cout << ' ' << i + 1;
}
cout << endl << ans << endl;
}
int main()
{
ios::sync_with_stdio(false);
while (cin >> m) {
init();
solve();
}
return 0;
}
UVa - 116 - Unidirectional TSP的更多相关文章
- uva 116 Unidirectional TSP (DP)
uva 116 Unidirectional TSP Background Problems that require minimum paths through some domain appear ...
- uva 116 Unidirectional TSP【号码塔+打印路径】
主题: uva 116 Unidirectional TSP 意甲冠军:给定一个矩阵,当前格儿童值三个方向回格最小值和当前的和,就第一列的最小值并打印路径(同样则去字典序最小的). 分析:刚開始想错了 ...
- UVA 116 Unidirectional TSP(dp + 数塔问题)
Unidirectional TSP Background Problems that require minimum paths through some domain appear in ma ...
- UVA 116 Unidirectional TSP(DP最短路字典序)
Description Unidirectional TSP Background Problems that require minimum paths through some domai ...
- UVA 116 Unidirectional TSP 经典dp题
题意:找最短路,知道三种行走方式,给出图,求出一条从左边到右边的最短路,且字典序最小. 用dp记忆化搜索的思想来考虑是思路很清晰的,但是困难在如何求出字典序最小的路. 因为左边到右边的字典序最小就必须 ...
- UVa 116 Unidirectional TSP (DP)
该题是<算法竞赛入门经典(第二版)>的一道例题,难度不算大.我先在没看题解的情况下自己做了一遍,虽然最终通过了,思路与书上的也一样.但比书上的代码复杂了很多,可见自己对问题的处理还是有所欠 ...
- UVA - 116 Unidirectional TSP 多段图的最短路 dp
题意 略 分析 因为字典序最小,所以从后面的列递推,每次对上一列的三个方向的行排序就能确保,数字之和最小DP就完事了 代码 因为有个地方数组名next和里面本身的某个东西冲突了,所以编译错了,后来改成 ...
- uva 116 - Unidirectional TSP (动态规划)
第一次做动规题目,下面均为个人理解以及个人方法,状态转移方程以及状态的定义也是依据个人理解.请过路大神不吝赐教. 状态:每一列的每个数[ i ][ j ]都是一个状态: 然后定义状态[ i ][ j ...
- uva 116 Unidirectional TSP(动态规划,多段图上的最短路)
这道题目并不是很难理解,题目大意就是求从第一列到最后一列的一个字典序最小的最短路,要求不仅输出最短路长度,还要输出字典序最小的路径. 这道题可以利用动态规划求解.状态定义为: cost[i][j] = ...
随机推荐
- Node.js Path 模块
Node.js path 模块提供了一些用于处理文件路径的小工具,我们可以通过以下方式引入该模块: var path = require("path") 方法 序号 方法 & ...
- Go 语言结构
Go Hello World 实例 Go 语言的基础组成有以下几个部分: 包声明 引入包 函数 变量 语句 & 表达式 注释 接下来让我们来看下简单的代码,该代码输出了"Hello ...
- 有一个排序二叉树,数据类型是int型,如何找出中间大的元素。
void tree2Dll(TNode* root, TNode*& tail) { if (!root) { return; } if (root->left) { tree2Dll( ...
- FLAnimatedImage -ios gif图片加载框架介绍
简介 FLAnimatedImage 是 Flipboard 团队开发的在它们 App 中渲染 GIF 图片使用的库. 后来 Flipboard 将 FLAnimatedImage 开源出来供大家使用 ...
- Spring之ORM模块
ORM模块对Hibernate.JDO.TopLinkiBatis等ORM框架提供支持 ORM模块依赖于dom4j.jar.antlr.jar等包 在Spring里,Hibernate的资源要交给Sp ...
- 大数据基础知识问答----hadoop篇
handoop相关知识点 1.Hadoop是什么? Hadoop是一个由Apache基金会所开发的分布式系统基础架构.用户可以在不了解分布式底层细节的情况下,开发分布式程序.充分利用集群的威力进行高速 ...
- EBS开发性能优化之查找需要优化的程序
1.登陆数据库LINUX环境 使用 top 命令查看进程状况 [oratest@ebsdb~]$top top - 15:58:59 up 8 days, 22:04, 1 user, load ...
- [线程]Thead 中传参数RuntimeError: thread.__init__() not called
在写一个多线程类的时候调用报错 RuntimeError: thread.__init__() not called class NotifyTread(threading.Thread): def ...
- linux2.6内核链表
一. 链表数据结构简介 链表是一种常用的组织有序数据的数据结构,它通过指针将一系列数据节点连接成一条数据链,是线性表的一种重要实现方式.相对于数组,链表具有更好的动态性,建立链 ...
- 【一天一道Leetcode】#203.Remove Linked List Elements
一天一道LeetCode 本系列文章已全部上传至我的github,地址:ZeeCoder's Github 欢迎大家关注我的新浪微博,我的新浪微博 我的个人博客已创建,欢迎大家持续关注! 一天一道le ...