Background

Problems that require minimum paths through some domain appear in many different areas of computer science. For example, one of the constraints in VLSI routing problems is minimizing wire length. The Traveling Salesperson
Problem (TSP) -- finding whether all the cities in a salesperson's route can be visited exactly once with a specified limit on travel time -- is one of the canonical examples of an NP-complete problem; solutions appear to require an inordinate amount of time
to generate, but are simple to check.

This problem deals with finding a minimal path through a grid of points while traveling only from left to right.

The Problem

Given an  matrix of integers, you are to write a program that computes a path of
minimal weight. A path starts anywhere in column 1 (the first column) and consists of a sequence of steps terminating in column n (the last column). A step consists of traveling from column i to column i+1 in an adjacent (horizontal
or diagonal) row. The first and last rows (rows 1 and m) of a matrix are considered adjacent, i.e., the matrix ``wraps'' so that it represents a horizontal cylinder. Legal steps are illustrated below.

The weight of a path is the sum of the integers in each of the n cells of the matrix that are visited.

For example, two slightly different  matrices are shown below (the only difference
is the numbers in the bottom row).

The minimal path is illustrated for each matrix. Note that the path for the matrix on the right takes advantage of the adjacency property of the first and last rows.

The Input

The input consists of a sequence of matrix specifications. Each matrix specification consists of the row and column dimensions in that order on a line followed by  integers
where m is the row dimension and n is the column dimension. The integers appear in the input in row major order, i.e., the first n integers constitute the first row of the matrix, the second n integers constitute the second
row and so on. The integers on a line will be separated from other integers by one or more spaces. Note: integers are not restricted to being positive. There will be one or more matrix specifications in an input file. Input is terminated by end-of-file.

For each specification the number of rows will be between 1 and 10 inclusive; the number of columns will be between 1 and 100 inclusive. No path's weight will exceed integer values representable using 30 bits.

The Output

Two lines should be output for each matrix specification in the input file, the first line represents a minimal-weight path, and the second line is the cost of a minimal path. The path consists of a sequence of nintegers
(separated by one or more spaces) representing the rows that constitute the minimal path. If there is more than one path of minimal weight the path that is lexicographically smallest should be output.

Sample Input

5 6
3 4 1 2 8 6
6 1 8 2 7 4
5 9 3 9 9 5
8 4 1 3 2 6
3 7 2 8 6 4
5 6
3 4 1 2 8 6
6 1 8 2 7 4
5 9 3 9 9 5
8 4 1 3 2 6
3 7 2 1 2 3
2 2
9 10 9 10

Sample Output

1 2 3 4 4 5
16
1 2 1 5 4 5
11
1 1
19

动态规划问题,倒着找一遍即可,不过这个要输出结果,所以需要记录下结果。不过AC了之后等级不高,速度稍慢。

AC代码:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cctype>
#include <cstring>
#include <string>
#include <sstream>
#include <vector>
#include <set>
#include <map>
#include <algorithm>
#include <stack>
#include <queue>
#include <bitset>
#include <cassert>
#include <cmath>
#include <functional>

using namespace std;

const int maxm = 12;
const int maxn = 105;
const int inf = 0x3f3f3f3f;

int matrix[maxm][maxn], nextLine[maxm][maxn];
int d[maxm][maxn]; // d[i][j]表示从格子(i, j)出发到最后一列的最小开销
int m, n;

void init()
{
	cin >> n;
	for (int i = 0; i < m; i++) {
		for (int j = 0; j < n; j++) {
			cin >> matrix[i][j];
		}
	}
}

// 动态规划。。。
void solve()
{
	int ans = inf, first = 0;
	for (int j = n - 1; j >= 0; j--) { // 逆推
		for (int i = 0; i < m; i++) {
			if (j == n - 1) { // 边界
				d[i][j] = matrix[i][j];
			}
			else {
				int row[3] = { i, i - 1, i + 1 };
				if (i == 0) {
					row[1] = m - 1; // 第0行上面是第m-1行
				}
				if (i == m - 1) {
					row[2] = 0; // 第m-1行下面是第0行
				}
				sort(row, row + 3); // 重排序是为了得到字典序最小的
				d[i][j] = inf;
				for (int k = 0; k < 3; k++) { // 向左走,判断那个比较小
					int v = d[row[k]][j + 1] + matrix[i][j];
					if (v < d[i][j]) {
						d[i][j] = v;
						nextLine[i][j] = row[k];
					}
				}
			}
			if (j == 0 && d[i][j] < ans) {
				ans = d[i][j];
				first = i;
			}
		}
	}
	// 输出
	cout << first + 1;
	for (int i = nextLine[first][0], j = 1; j < n; i = nextLine[i][j], j++) {
		cout << ' ' << i + 1;
	}
	cout << endl << ans << endl;
}

int main()
{
	ios::sync_with_stdio(false);
	while (cin >> m) {
		init();
		solve();
	}

	return 0;
}

UVa - 116 - Unidirectional TSP的更多相关文章

  1. uva 116 Unidirectional TSP (DP)

    uva 116 Unidirectional TSP Background Problems that require minimum paths through some domain appear ...

  2. uva 116 Unidirectional TSP【号码塔+打印路径】

    主题: uva 116 Unidirectional TSP 意甲冠军:给定一个矩阵,当前格儿童值三个方向回格最小值和当前的和,就第一列的最小值并打印路径(同样则去字典序最小的). 分析:刚開始想错了 ...

  3. UVA 116 Unidirectional TSP(dp + 数塔问题)

     Unidirectional TSP  Background Problems that require minimum paths through some domain appear in ma ...

  4. UVA 116 Unidirectional TSP(DP最短路字典序)

    Description    Unidirectional TSP  Background Problems that require minimum paths through some domai ...

  5. UVA 116 Unidirectional TSP 经典dp题

    题意:找最短路,知道三种行走方式,给出图,求出一条从左边到右边的最短路,且字典序最小. 用dp记忆化搜索的思想来考虑是思路很清晰的,但是困难在如何求出字典序最小的路. 因为左边到右边的字典序最小就必须 ...

  6. UVa 116 Unidirectional TSP (DP)

    该题是<算法竞赛入门经典(第二版)>的一道例题,难度不算大.我先在没看题解的情况下自己做了一遍,虽然最终通过了,思路与书上的也一样.但比书上的代码复杂了很多,可见自己对问题的处理还是有所欠 ...

  7. UVA - 116 Unidirectional TSP 多段图的最短路 dp

    题意 略 分析 因为字典序最小,所以从后面的列递推,每次对上一列的三个方向的行排序就能确保,数字之和最小DP就完事了 代码 因为有个地方数组名next和里面本身的某个东西冲突了,所以编译错了,后来改成 ...

  8. uva 116 - Unidirectional TSP (动态规划)

    第一次做动规题目,下面均为个人理解以及个人方法,状态转移方程以及状态的定义也是依据个人理解.请过路大神不吝赐教. 状态:每一列的每个数[ i ][ j ]都是一个状态: 然后定义状态[ i ][ j ...

  9. uva 116 Unidirectional TSP(动态规划,多段图上的最短路)

    这道题目并不是很难理解,题目大意就是求从第一列到最后一列的一个字典序最小的最短路,要求不仅输出最短路长度,还要输出字典序最小的路径. 这道题可以利用动态规划求解.状态定义为: cost[i][j] = ...

随机推荐

  1. IDEA中Git的使用

    工作中多人使用版本控制软件协作开发,常见的应用场景归纳如下: 假设小组中有两个人,组长小张,组员小袁 场景一:小张创建项目并提交到远程Git仓库 场景二:小袁从远程Git仓库上获取项目源码 场景三:小 ...

  2. 在web应用中使用Log4j 2

    Using Log4j 2 inWeb Applications (在web应用中使用Log4j 2) 来源:http://logging.apache.org/log4j/2.x/manual/we ...

  3. NLP系列(4)_朴素贝叶斯实战与进阶

    作者: 寒小阳 && 龙心尘 时间:2016年2月. 出处:http://blog.csdn.net/han_xiaoyang/article/details/50629608 htt ...

  4. Mysql 统一设置utf8字符

    无聊的关于有效配置文件路径的备忘 原来阿里云服务器的mysql 5.5 , 配置/etc/my.cnf是没有任何作用的,需要编辑/etc/mysql/my.cnf 妈的, 就是这一点让我测试了两天, ...

  5. ROS机器人程序设计(原书第2版)补充资料 (壹) 第一章 ROS系统入门

    ROS机器人程序设计(原书第2版)补充资料 (壹) 第一章 ROS系统入门 书中,大部分出现hydro的地方,直接替换为indigo或jade或kinetic,即可在对应版本中使用. 第一章主要包括R ...

  6. Hadoop学习笔记1:伪分布式环境搭建

    在搭建Hadoop环境之前,请先阅读如下博文,把搭建Hadoop环境之前的准备工作做好,博文如下: 1.CentOS 6.7下安装JDK , 地址: http://blog.csdn.net/yule ...

  7. C/C++与Matlab混合编程初探

    ================================================================== % 欢迎转载,尊重原创,所以转载请注明出处. % http://b ...

  8. SQL 数据库语言分析总结(一)

    SQL语言是被广泛采用的数据库的学习语言,之前在本科的时候已经学习过了,但是后来又忘记了,所以这次简单的总结一下. 分类 交互式sql语言,交互式语言主要是利用一些数据库工具,比如mysql的终端工具 ...

  9. 密码学Hash函数

    定义: Hash函数H将可变长度的数据块M作为输入,产生固定长度的Hash值h = H(M). 称M是h的原像.因为H是多对一的映射,所以对于任意给定的Hash值h,对应有多个原像.如果满足x≠y且H ...

  10. 5、Android Service测试

    如果你在应用中使用了Service,你应该来测试这个Service来确保它正常工作.你可以创建仪表测试来验证Service的行为是否正确:比如,service保存和返回有效的数值并正常的处理数据. A ...