Loj #2192. 「SHOI2014」概率充电器
Loj #2192. 「SHOI2014」概率充电器
题目描述
著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:
「采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率充电器,您生
活不可或缺的必需品!能充上电吗?现在就试试看吧!」
SHOI 概率充电器由 \(n-1\) 条导线连通了 \(n\) 个充电元件。进行充电时,每条导线是否可以导电以
概率决定,每一个充电元件自身是否直接进行充电也由概率决定。随后电能可以从直接充电的元件经过
通电的导线使得其他充电元件进行间接充电。
作为 SHOI 公司的忠实客户,你无法抑制自己购买 SHOI 产品的冲动。在排了一个星期的长队之后终
于入手了最新型号的 SHOI 概率充电器。你迫不及待地将 SHOI 概率充电器插入电源——这时你突然想
知道,进入充电状态的元件个数的期望是多少呢?
输入格式
第一行一个整数 \(n\),概率充电器的充电元件个数,充电元件由 \(1 \sim n\) 编号。
之后的 \(n-1\) 行每行三个整数 \(a, b, p\),描述了一根导线连接了编号为 \(a\) 和 \(b\) 的充电元
件,通电概率为 \(p\, \%\)。
第 \(n+2\) 行 \(n\) 个整数 \(q_1,\ldots,q_n\)。表示 \(i\) 号元件直接充电的概率为 \(q_i\, \%\)。
输出格式
输出一行一个实数,为进入充电状态的元件个数的期望,四舍五入到六位小数。
数据范围与提示
对于 \(100\%\) 的数据,\(n \leq 500000,\ 0 \leq p,q_i \leq 100\)。
\(\\\)
根据期望的线性性,我们统计每个点通电出现的概率。发现统计每个点不通电的概率好统计些,也就是该点所在联通块一个点都不通电。
上下两次树形\(DP\)就搞定了。
代码:
#include<bits/stdc++.h>
#define ll long long
#define N 500005
using namespace std;
inline int Get() {int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}while('0'<=ch&&ch<='9') {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}return x*f;}
int n;
struct road {
int to,nxt;
double p;
}s[N<<1];
int h[N],cnt;
void add(int i,int j,double p) {
s[++cnt]=(road) {j,h[i],p};h[i]=cnt;
}
double f[N];
double up[N];
double q[N];
void dfs(int v,int fr) {
f[v]=1-q[v];
for(int i=h[v];i;i=s[i].nxt) {
int to=s[i].to;
if(to==fr) continue ;
dfs(to,v);
f[v]=f[v]*(s[i].p*f[to]+(1.0-s[i].p));
}
}
double pre[N],suf[N];
double ans;
void dfs2(int v,int fr) {
ans+=1.0-f[v]*up[v];
vector<int>tem;
vector<double>E;
tem.clear();
E.clear();
for(int i=h[v];i;i=s[i].nxt) {
int to=s[i].to;
if(to==fr) continue ;
tem.push_back(to);
E.push_back(s[i].p);
suf[to]=pre[to]=s[i].p*f[to]+(1.0-s[i].p);
}
for(int i=1;i<tem.size();i++) pre[tem[i]]=pre[tem[i]]*pre[tem[i-1]];
for(int i=tem.size()-2;i>=0;i--) suf[tem[i]]=suf[tem[i]]*suf[tem[i+1]];
for(int i=0;i<tem.size();i++) {
int to=tem[i];
double now=1;
if(i>0) now=now*pre[tem[i-1]];
if(i<tem.size()-1) now=now*suf[tem[i+1]];
up[to]=up[v]*now*(1.0-q[v])*E[i]+(1.0-E[i]);
dfs2(to,v);
}
}
int main() {
n=Get();
int a,b,p;
for(int i=1;i<n;i++) {
a=Get(),b=Get(),p=Get();
add(a,b,1.0*p/100);
add(b,a,1.0*p/100);
}
for(int i=1;i<=n;i++) q[i]=1.0*Get()/100;
dfs(1,0);
up[1]=1;
dfs2(1,0);
cout<<fixed<<setprecision(6)<<ans;
return 0;
}
Loj #2192. 「SHOI2014」概率充电器的更多相关文章
- 「SHOI2014」概率充电器
题面 n <= 500000 0<= p,qi <= 100 题解 这是道概率树形DP题,但是很难推怎么用加法原理和乘法原理正向求每个点被充电的概率,所以我们求每个点不被充电的概 ...
- [LOJ 2190] 「SHOI2014」信号增幅仪
[LOJ 2190] 「SHOI2014」信号增幅仪 链接 链接 题解 坐标系直到 \(x\) 轴与椭圆长轴平行 点的坐标变换用旋转公式就可以了 因为是椭圆,所以所有点横坐标除以 \(p\) 然后最小 ...
- LOJ#2190. 「SHOI2014」信号增幅仪(最小圆覆盖)
题面 传送门 题解 我连椭圆是个啥都不知道导致这么简单一道题我一点思路都没有-- 我们把坐标系旋转一下,让半长轴成为新的\(x\)轴,也就是说所有点都绕原点逆时针旋转\(360-a\)度,然后再把所有 ...
- Loj #2542. 「PKUWC2018」随机游走
Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次 ...
- loj#2076. 「JSOI2016」炸弹攻击 模拟退火
目录 题目链接 题解 代码 题目链接 loj#2076. 「JSOI2016」炸弹攻击 题解 模拟退火 退火时,由于答案比较小,但是温度比较高 所以在算exp时最好把相差的点数乘以一个常数让选取更差的 ...
- loj#2552. 「CTSC2018」假面
题目链接 loj#2552. 「CTSC2018」假面 题解 本题严谨的证明了我菜的本质 对于砍人的操作好做找龙哥就好了,blood很少,每次暴力维护一下 对于操作1 设\(a_i\)为第i个人存活的 ...
- loj#2537. 「PKUWC2018」Minimax
题目链接 loj#2537. 「PKUWC2018」Minimax 题解 设\(f_{u,i}\)表示选取i的概率,l为u的左子节点,r为u的子节点 $f_{u,i} = f_{l,i}(p \sum ...
- Loj #3044. 「ZJOI2019」Minimax 搜索
Loj #3044. 「ZJOI2019」Minimax 搜索 题目描述 九条可怜是一个喜欢玩游戏的女孩子.为了增强自己的游戏水平,她想要用理论的武器武装自己.这道题和著名的 Minimax 搜索有关 ...
- Loj #3045. 「ZJOI2019」开关
Loj #3045. 「ZJOI2019」开关 题目描述 九条可怜是一个贪玩的女孩子. 这天,她和她的好朋友法海哥哥去玩密室逃脱.在他们面前的是 \(n\) 个开关,开始每个开关都是关闭的状态.要通过 ...
随机推荐
- Java 8 文件操作(转)
我们知道在JDK6甚至之前的时候,我们想要读取一个文本文件也是非常麻烦的一件事,而现在他们都变得简单了, 这要归功于NIO2,我们先看看之前的做法: 读取一个文本文件 BufferedReader b ...
- 使用Github来管理的代码片段
代码片段介绍 xcode4引入了一个新feature: code snippets,在整个界面的右下角,可以通过快捷键:cmd + ctrl + opt + 2 调出来.code snippets是一 ...
- SpringData ES中一些底层原理的分析
之前写过一篇SpringData ES 关于字段名和索引中的列名字不一致导致的查询问题,顺便深入学习下Spring Data Elasticsearch. Spring Data Elasticsea ...
- .NET Orm 性能测试
.NET Orm 性能测试 简介 OrmBenchmark 这个项目主要是为了测试主要的Orm对于 SqlServer 数据库的查询并将数据转换成所需 POCO 对象的耗时情况(好吧,实际上不完全or ...
- Loadrunner 11 中Run-Time Setting详细参数说明
.General/Run Logic :用来设置运行脚本迭代的次数,迭代次数只对run部分的脚本迭代次数有影响,对init和End部分无印象.一般设置未1~3次,只会影响在单位时间内客户端想服务器提交 ...
- c#Socket客户端和服务端的信息发送
这是我制作的界面信息,c# Socket通信的简单使用,刚开始学习,不对的地方请大家指教,目前是可以运行的,之后自己在慢慢添加新的东西.同时了解Tcp协议的三次握手.希望对跟我一样的初学者有所帮助. ...
- Git打标签与版本控制规范
前言 本文适用于使用Git做VCS(版本控制系统)的场景. 用过Git的程序猿,都喜欢其分布式架构带来的commit快感.不用像使用SVN这种集中式版本管理系统,每一次提交代码,都要为代码冲突捏一把冷 ...
- 【BZOJ 2744】【HEOI2012】朋友圈
题目链接: TP 题解: 对于A国,我们发现,最大团一定不大于2.对于B国,发现同奇偶性点之间都有边,不同奇偶性之间可能有边,也就是说对于B国是一个二分图最大团,也就是求B国补图的二分图最大独立集.然 ...
- BZOJ_3772_精神污染_主席树
BZOJ_3772_精神污染_主席树 Description 兵库县位于日本列岛的中央位置,北临日本海,南面濑户内海直通太平洋,中央部位是森林和山地,与拥有关西机场的大阪府比邻而居,是关西地区面积最大 ...
- AT89S52最小系统
NC是NOT CONNECTED的缩写,即空脚. 芯片中NC引脚没有任何用途,只是限于封装形式,该引脚必须存在.