Loj #2192. 「SHOI2014」概率充电器

题目描述

著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:

「采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率充电器,您生

活不可或缺的必需品!能充上电吗?现在就试试看吧!」

SHOI 概率充电器由 \(n-1\) 条导线连通了 \(n\) 个充电元件。进行充电时,每条导线是否可以导电以

概率决定,每一个充电元件自身是否直接进行充电也由概率决定。随后电能可以从直接充电的元件经过

通电的导线使得其他充电元件进行间接充电。

作为 SHOI 公司的忠实客户,你无法抑制自己购买 SHOI 产品的冲动。在排了一个星期的长队之后终

于入手了最新型号的 SHOI 概率充电器。你迫不及待地将 SHOI 概率充电器插入电源——这时你突然想

知道,进入充电状态的元件个数的期望是多少呢?

输入格式

第一行一个整数 \(n\),概率充电器的充电元件个数,充电元件由 \(1 \sim n\) 编号。

之后的 \(n-1\) 行每行三个整数 \(a, b, p\),描述了一根导线连接了编号为 \(a\) 和 \(b\) 的充电元

件,通电概率为 \(p\, \%\)。

第 \(n+2\) 行 \(n\) 个整数 \(q_1,\ldots,q_n\)。表示 \(i\) 号元件直接充电的概率为 \(q_i\, \%\)。

输出格式

输出一行一个实数,为进入充电状态的元件个数的期望,四舍五入到六位小数。

数据范围与提示

对于 \(100\%\) 的数据,\(n \leq 500000,\ 0 \leq p,q_i \leq 100\)。

\(\\\)

根据期望的线性性,我们统计每个点通电出现的概率。发现统计每个点不通电的概率好统计些,也就是该点所在联通块一个点都不通电。

上下两次树形\(DP\)就搞定了。

代码:

#include<bits/stdc++.h>
#define ll long long
#define N 500005 using namespace std;
inline int Get() {int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}while('0'<=ch&&ch<='9') {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}return x*f;} int n;
struct road {
int to,nxt;
double p;
}s[N<<1]; int h[N],cnt;
void add(int i,int j,double p) {
s[++cnt]=(road) {j,h[i],p};h[i]=cnt;
} double f[N];
double up[N];
double q[N]; void dfs(int v,int fr) {
f[v]=1-q[v];
for(int i=h[v];i;i=s[i].nxt) {
int to=s[i].to;
if(to==fr) continue ;
dfs(to,v);
f[v]=f[v]*(s[i].p*f[to]+(1.0-s[i].p));
}
} double pre[N],suf[N];
double ans;
void dfs2(int v,int fr) {
ans+=1.0-f[v]*up[v];
vector<int>tem;
vector<double>E;
tem.clear();
E.clear();
for(int i=h[v];i;i=s[i].nxt) {
int to=s[i].to;
if(to==fr) continue ;
tem.push_back(to);
E.push_back(s[i].p);
suf[to]=pre[to]=s[i].p*f[to]+(1.0-s[i].p);
}
for(int i=1;i<tem.size();i++) pre[tem[i]]=pre[tem[i]]*pre[tem[i-1]];
for(int i=tem.size()-2;i>=0;i--) suf[tem[i]]=suf[tem[i]]*suf[tem[i+1]];
for(int i=0;i<tem.size();i++) {
int to=tem[i];
double now=1;
if(i>0) now=now*pre[tem[i-1]];
if(i<tem.size()-1) now=now*suf[tem[i+1]];
up[to]=up[v]*now*(1.0-q[v])*E[i]+(1.0-E[i]);
dfs2(to,v);
}
} int main() {
n=Get();
int a,b,p;
for(int i=1;i<n;i++) {
a=Get(),b=Get(),p=Get();
add(a,b,1.0*p/100);
add(b,a,1.0*p/100);
}
for(int i=1;i<=n;i++) q[i]=1.0*Get()/100;
dfs(1,0);
up[1]=1;
dfs2(1,0);
cout<<fixed<<setprecision(6)<<ans;
return 0;
}

Loj #2192. 「SHOI2014」概率充电器的更多相关文章

  1. 「SHOI2014」概率充电器

    题面 n <= 500000   0<= p,qi <= 100 题解 这是道概率树形DP题,但是很难推怎么用加法原理和乘法原理正向求每个点被充电的概率,所以我们求每个点不被充电的概 ...

  2. [LOJ 2190] 「SHOI2014」信号增幅仪

    [LOJ 2190] 「SHOI2014」信号增幅仪 链接 链接 题解 坐标系直到 \(x\) 轴与椭圆长轴平行 点的坐标变换用旋转公式就可以了 因为是椭圆,所以所有点横坐标除以 \(p\) 然后最小 ...

  3. LOJ#2190. 「SHOI2014」信号增幅仪(最小圆覆盖)

    题面 传送门 题解 我连椭圆是个啥都不知道导致这么简单一道题我一点思路都没有-- 我们把坐标系旋转一下,让半长轴成为新的\(x\)轴,也就是说所有点都绕原点逆时针旋转\(360-a\)度,然后再把所有 ...

  4. Loj #2542. 「PKUWC2018」随机游走

    Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次 ...

  5. loj#2076. 「JSOI2016」炸弹攻击 模拟退火

    目录 题目链接 题解 代码 题目链接 loj#2076. 「JSOI2016」炸弹攻击 题解 模拟退火 退火时,由于答案比较小,但是温度比较高 所以在算exp时最好把相差的点数乘以一个常数让选取更差的 ...

  6. loj#2552. 「CTSC2018」假面

    题目链接 loj#2552. 「CTSC2018」假面 题解 本题严谨的证明了我菜的本质 对于砍人的操作好做找龙哥就好了,blood很少,每次暴力维护一下 对于操作1 设\(a_i\)为第i个人存活的 ...

  7. loj#2537. 「PKUWC2018」Minimax

    题目链接 loj#2537. 「PKUWC2018」Minimax 题解 设\(f_{u,i}\)表示选取i的概率,l为u的左子节点,r为u的子节点 $f_{u,i} = f_{l,i}(p \sum ...

  8. Loj #3044. 「ZJOI2019」Minimax 搜索

    Loj #3044. 「ZJOI2019」Minimax 搜索 题目描述 九条可怜是一个喜欢玩游戏的女孩子.为了增强自己的游戏水平,她想要用理论的武器武装自己.这道题和著名的 Minimax 搜索有关 ...

  9. Loj #3045. 「ZJOI2019」开关

    Loj #3045. 「ZJOI2019」开关 题目描述 九条可怜是一个贪玩的女孩子. 这天,她和她的好朋友法海哥哥去玩密室逃脱.在他们面前的是 \(n\) 个开关,开始每个开关都是关闭的状态.要通过 ...

随机推荐

  1. Java 8 文件操作(转)

    我们知道在JDK6甚至之前的时候,我们想要读取一个文本文件也是非常麻烦的一件事,而现在他们都变得简单了, 这要归功于NIO2,我们先看看之前的做法: 读取一个文本文件 BufferedReader b ...

  2. 使用Github来管理的代码片段

    代码片段介绍 xcode4引入了一个新feature: code snippets,在整个界面的右下角,可以通过快捷键:cmd + ctrl + opt + 2 调出来.code snippets是一 ...

  3. SpringData ES中一些底层原理的分析

    之前写过一篇SpringData ES 关于字段名和索引中的列名字不一致导致的查询问题,顺便深入学习下Spring Data Elasticsearch. Spring Data Elasticsea ...

  4. .NET Orm 性能测试

    .NET Orm 性能测试 简介 OrmBenchmark 这个项目主要是为了测试主要的Orm对于 SqlServer 数据库的查询并将数据转换成所需 POCO 对象的耗时情况(好吧,实际上不完全or ...

  5. Loadrunner 11 中Run-Time Setting详细参数说明

    .General/Run Logic :用来设置运行脚本迭代的次数,迭代次数只对run部分的脚本迭代次数有影响,对init和End部分无印象.一般设置未1~3次,只会影响在单位时间内客户端想服务器提交 ...

  6. c#Socket客户端和服务端的信息发送

    这是我制作的界面信息,c# Socket通信的简单使用,刚开始学习,不对的地方请大家指教,目前是可以运行的,之后自己在慢慢添加新的东西.同时了解Tcp协议的三次握手.希望对跟我一样的初学者有所帮助. ...

  7. Git打标签与版本控制规范

    前言 本文适用于使用Git做VCS(版本控制系统)的场景. 用过Git的程序猿,都喜欢其分布式架构带来的commit快感.不用像使用SVN这种集中式版本管理系统,每一次提交代码,都要为代码冲突捏一把冷 ...

  8. 【BZOJ 2744】【HEOI2012】朋友圈

    题目链接: TP 题解: 对于A国,我们发现,最大团一定不大于2.对于B国,发现同奇偶性点之间都有边,不同奇偶性之间可能有边,也就是说对于B国是一个二分图最大团,也就是求B国补图的二分图最大独立集.然 ...

  9. BZOJ_3772_精神污染_主席树

    BZOJ_3772_精神污染_主席树 Description 兵库县位于日本列岛的中央位置,北临日本海,南面濑户内海直通太平洋,中央部位是森林和山地,与拥有关西机场的大阪府比邻而居,是关西地区面积最大 ...

  10. AT89S52最小系统

    NC是NOT CONNECTED的缩写,即空脚. 芯片中NC引脚没有任何用途,只是限于封装形式,该引脚必须存在.