BZOJ的第一页果然还是很多裸题啊,小C陆续划水屯些板子。

Description

  自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树?

Input

  第一行为N(0 < N < = 1000),接下来N行,第i+1行给出第i个节点的度数Di,如果对度数不要求,则输入-1.

Output

  一个整数,表示不同的满足要求的树的个数,无解输出0.

Sample Input

  3
  1
  -1
  -1

Sample Output

  2

HINT

  两棵树分别为1-2-3;1-3-2.

Solution

  碰见这种没有知识储备脑子里都没有想法的题,考场上还是保佑自己碰到一些自己学过的算法吧。

  讲这道题之前先来说说prufer编码是什么:

    ①prufer编码是树的一种表示形式,不同的编码与不同的树形态一一对应;

     (不同的树形态指的是两棵树中至少有一条边连接的点不同)

    ②根据定理证明,n个点最多能构成(n-2)^n种不同的树形态。

     (至于为什么是这个式子看看接下来prufer编码是如何构造的就知道了)

    ③构造方法:

    

     如图所示,为一棵有6个结点的树,每次选出叶子节点中编号最小的一个,将与其相连的那个节点的标号加入数列,再将该叶子结点删去。直到树中剩下两个节点为止。

     所以上图的树的prufer编码就是:5 3 1 5(依次删去2 4 3 1)。

     显而易见,一棵节点数为n的树的prufer编码长度为n-2。

     由于prufer编码的每一位都有可能是1~n,不同的prufer编码有(n-2)^n种。

     所以根据第①条一一对应的性质,不同的树有(n-2)^n种。

  利用prufer编码,我们可以轻易地解决这道题。

  从prufer编码中,我们可以看出一棵树中所有点的度数,每个点的度数为它在prufer编码中出现的次数+1。

  因此对于题目中规定度数的点,我们可以首先确定它们在prufer编码中的位置。

  假设规定度数的点有p个,度数分别为a1、a2……ap。

  那么把这p个点填进prufer编码的方案数是。(排列组合、乘法原理瞎推)

  那么prufer编码中剩下的空位有个,未规定度数的节点有n-p个,所以方案数再乘上即可。

  由于答案没有取模,所以要用到高精度乘/除单精度。

  题目中所说的无解情况有3种:

    ①

    ②

    ③

  时间复杂度写得不是太糟都能过,注意高精度数的位数。

#include <cstdio>
#include <algorithm>
#include <cstring>
#define ll long long
#define mod 1000000000
#define MS 354
using namespace std;
struct hp
{
int len; ll ar[MS];
friend hp operator/(const hp& a,int b)
{
register ll lt=;
register int i;
hp c;
memset(&c,,sizeof(c));
c.len=a.len;
for (i=a.len-;i>=;--i)
{
lt=lt*mod+a.ar[i];
c.ar[i]=lt/b; lt%=b;
}
if (!c.ar[c.len-]) --c.len;
return c;
}
friend hp operator*(const hp& a,int b)
{
register int i,j;
hp c;
memset(&c,,sizeof(c));
c.len=a.len;
for (i=;i<a.len;++i)
{
c.ar[i]+=a.ar[i]*b;
c.ar[i+]+=c.ar[i]/mod;
c.ar[i]%=mod;
}
if (c.ar[c.len]) ++c.len;
return c;
}
}sum;
int n,rn,uk; inline int read()
{
int n=,f=; char c=getchar();
while (c<'' || c>'') {if(c=='-')f=-; c=getchar();}
while (c>='' && c<='') {n=n*+c-''; c=getchar();}
return n*f;
} int main()
{
register int i,x;
sum.ar[]=; sum.len=;
n=read(); rn=n-;
for (i=;i<=rn;++i) sum=sum*i;
for (i=;i<=n;++i)
{
x=read()-;
if (x>) {if (rn>=x) {for (rn-=x;x>=;--x) sum=sum/x;} else return *printf("");}
else if (x==-) ++uk;
else return *printf("");
}
if (rn&&!uk) return *printf("");
for (i=;i<=rn;++i) sum=sum/i*uk;
printf("%lld",sum.ar[sum.len-]);
for (i=sum.len-;i>=;--i) printf("%09lld",sum.ar[i]);
}

Last Word

  小C看到这道题的时候就觉得这肯定不是正常题,就是没有看过相关的东西死都做不出来的那种。

  结果真的是这样。

[BZOJ]1005 明明的烦恼(HNOI2008)的更多相关文章

  1. [HNOI2008][bzoj 1005]明明的烦恼(prufer序列)

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 7121  Solved: 2816[Submit][Stat ...

  2. BZOJ 1005 明明的烦恼

    Description 自从明明学了树的结构,就对奇怪的树产生了兴趣...... 给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? Input 第一行为 ...

  3. BZOJ 1005 明明的烦恼 (组合数学)

    题解:n为树的节点数,d[ ]为各节点的度数,m为无限制度数的节点数. 则               所以要求在n-2大小的数组中插入tot各序号,共有种插法: 在tot各序号排列中,插第一个节点的 ...

  4. BZOJ 1005 明明的烦恼(prufer序列+高精度)

    有一种东西叫树的prufer序列,一个树的与一个prufer序列是一一对应的关系. 设有m个度数确定的点,这些点的度为dee[i],那么每个点在prufer序列中出现了dee[i]-1次. 由排列组合 ...

  5. BZOJ 1005 明明的烦恼 Prufer序列+组合数学+高精度

    题目大意:给定一棵n个节点的树的节点的度数.当中一些度数无限制,求能够生成多少种树 Prufer序列 把一棵树进行下面操作: 1.找到编号最小的叶节点.删除这个节点,然后与这个叶节点相连的点计入序列 ...

  6. BZOJ 1005 [HNOI2008] 明明的烦恼(组合数学 Purfer Sequence)

    题目大意 自从明明学了树的结构,就对奇怪的树产生了兴趣...... 给出标号为 1 到 N 的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? Input 第一行为 N( ...

  7. 【BZOJ】【1005】【HNOI2008】明明的烦恼

    Prufer序列/排列组合+高精度 窝不会告诉你我是先做了BZOJ1211然后才来做这题的>_>(为什么?因为我以前不会高精度呀……) 在A了BZOJ 1211和1089之后,蒟蒻终于有信 ...

  8. BZOJ 1005: [HNOI2008]明明的烦恼 Purfer序列 大数

    1005: [HNOI2008]明明的烦恼 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...

  9. bzoj 1005: [HNOI2008]明明的烦恼 prufer编号&&生成树计数

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2248  Solved: 898[Submit][Statu ...

随机推荐

  1. python实现维吉尼亚解密

    # -*-coding:UTF-8-*- from sys import stdout miwen = "KCCPKBGUFDPHQTYAVINRRTMVGRKDNBVFDETDGILTXR ...

  2. Ubuntu Desktop 16.04 LTS 下成功配置Jupyter的两个python内核版本(2.7x,3.5x)

    Ubuntu  Desktop 16.04 LTS 安装好系统默认就有python两个不同版本(2.7.12和3.5.2) 现在来熟悉一下jupyter的对python这两个不同python版本的内核 ...

  3. token 验证

    组件: https://jwt.io/#libraries-io

  4. ORA-00379 缓冲池 DEFAULT 中无法提供 32K 块大小的空闲缓冲区

    (一)问题 今天在使用Pl/sql developer查看表空间大小的时候,报错误:ORA-00379 缓冲池 DEFAULT 中无法提供 32K 块大小的空闲缓冲区,具体如下图: SQL> s ...

  5. Django REST framework+Vue 打造生鲜超市(三)

    四.xadmin后台管理 4.1.xadmin添加富文本插件 (1)xadmin/plugins文件夹下新建文件ueditor.py 代码如下: # xadmin/plugins/ueditor.py ...

  6. spring2——IOC之Bean的装配

    spring容器对于bean的装配提供了两个接口容器分别是"ApplicationContext接口容器"和"BeanFactory接口容器",其中" ...

  7. jenkins配置findbugs失败---不要随便忽略警告!一个因为文件所有权引发的血案

    一:背景交代 这两天组长让我这边搭一个持续集成环境.梳理了需求后,因为我们的项目都是maven项目,所以我选择了jenkins+外置maven(区别于直接从jenkins里面安装)的方案.(cento ...

  8. Struts(九):值栈(OGNL)

    引言 在我们开发过程中,往往会使用一个对像传递到一个具体的action中,之后到跳转页面中访问对应对象的具体的参数. 比如:我们搭建一个struts2项目: 回顾下如何搭建strut2: 1.下载的s ...

  9. $rootscope说明

    scope是AngularJS中的作用域(其实就是存储数据的地方),很类似JavaScript的原型链 .搜索的时候,优先找自己的scope,如果没有找到就沿着作用域链向上搜索,直至到达根作用域roo ...

  10. AtomicInteger类的理解及使用

    AtomicInteger在多线程并发场景的使用 AtomicInteger提供原子操作来进行Integer的使用,因此十分适合高并发情况下的使用. AtomicInteger位于包package j ...