BZOJ的第一页果然还是很多裸题啊,小C陆续划水屯些板子。

Description

  自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树?

Input

  第一行为N(0 < N < = 1000),接下来N行,第i+1行给出第i个节点的度数Di,如果对度数不要求,则输入-1.

Output

  一个整数,表示不同的满足要求的树的个数,无解输出0.

Sample Input

  3
  1
  -1
  -1

Sample Output

  2

HINT

  两棵树分别为1-2-3;1-3-2.

Solution

  碰见这种没有知识储备脑子里都没有想法的题,考场上还是保佑自己碰到一些自己学过的算法吧。

  讲这道题之前先来说说prufer编码是什么:

    ①prufer编码是树的一种表示形式,不同的编码与不同的树形态一一对应;

     (不同的树形态指的是两棵树中至少有一条边连接的点不同)

    ②根据定理证明,n个点最多能构成(n-2)^n种不同的树形态。

     (至于为什么是这个式子看看接下来prufer编码是如何构造的就知道了)

    ③构造方法:

    

     如图所示,为一棵有6个结点的树,每次选出叶子节点中编号最小的一个,将与其相连的那个节点的标号加入数列,再将该叶子结点删去。直到树中剩下两个节点为止。

     所以上图的树的prufer编码就是:5 3 1 5(依次删去2 4 3 1)。

     显而易见,一棵节点数为n的树的prufer编码长度为n-2。

     由于prufer编码的每一位都有可能是1~n,不同的prufer编码有(n-2)^n种。

     所以根据第①条一一对应的性质,不同的树有(n-2)^n种。

  利用prufer编码,我们可以轻易地解决这道题。

  从prufer编码中,我们可以看出一棵树中所有点的度数,每个点的度数为它在prufer编码中出现的次数+1。

  因此对于题目中规定度数的点,我们可以首先确定它们在prufer编码中的位置。

  假设规定度数的点有p个,度数分别为a1、a2……ap。

  那么把这p个点填进prufer编码的方案数是。(排列组合、乘法原理瞎推)

  那么prufer编码中剩下的空位有个,未规定度数的节点有n-p个,所以方案数再乘上即可。

  由于答案没有取模,所以要用到高精度乘/除单精度。

  题目中所说的无解情况有3种:

    ①

    ②

    ③

  时间复杂度写得不是太糟都能过,注意高精度数的位数。

#include <cstdio>
#include <algorithm>
#include <cstring>
#define ll long long
#define mod 1000000000
#define MS 354
using namespace std;
struct hp
{
int len; ll ar[MS];
friend hp operator/(const hp& a,int b)
{
register ll lt=;
register int i;
hp c;
memset(&c,,sizeof(c));
c.len=a.len;
for (i=a.len-;i>=;--i)
{
lt=lt*mod+a.ar[i];
c.ar[i]=lt/b; lt%=b;
}
if (!c.ar[c.len-]) --c.len;
return c;
}
friend hp operator*(const hp& a,int b)
{
register int i,j;
hp c;
memset(&c,,sizeof(c));
c.len=a.len;
for (i=;i<a.len;++i)
{
c.ar[i]+=a.ar[i]*b;
c.ar[i+]+=c.ar[i]/mod;
c.ar[i]%=mod;
}
if (c.ar[c.len]) ++c.len;
return c;
}
}sum;
int n,rn,uk; inline int read()
{
int n=,f=; char c=getchar();
while (c<'' || c>'') {if(c=='-')f=-; c=getchar();}
while (c>='' && c<='') {n=n*+c-''; c=getchar();}
return n*f;
} int main()
{
register int i,x;
sum.ar[]=; sum.len=;
n=read(); rn=n-;
for (i=;i<=rn;++i) sum=sum*i;
for (i=;i<=n;++i)
{
x=read()-;
if (x>) {if (rn>=x) {for (rn-=x;x>=;--x) sum=sum/x;} else return *printf("");}
else if (x==-) ++uk;
else return *printf("");
}
if (rn&&!uk) return *printf("");
for (i=;i<=rn;++i) sum=sum/i*uk;
printf("%lld",sum.ar[sum.len-]);
for (i=sum.len-;i>=;--i) printf("%09lld",sum.ar[i]);
}

Last Word

  小C看到这道题的时候就觉得这肯定不是正常题,就是没有看过相关的东西死都做不出来的那种。

  结果真的是这样。

[BZOJ]1005 明明的烦恼(HNOI2008)的更多相关文章

  1. [HNOI2008][bzoj 1005]明明的烦恼(prufer序列)

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 7121  Solved: 2816[Submit][Stat ...

  2. BZOJ 1005 明明的烦恼

    Description 自从明明学了树的结构,就对奇怪的树产生了兴趣...... 给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? Input 第一行为 ...

  3. BZOJ 1005 明明的烦恼 (组合数学)

    题解:n为树的节点数,d[ ]为各节点的度数,m为无限制度数的节点数. 则               所以要求在n-2大小的数组中插入tot各序号,共有种插法: 在tot各序号排列中,插第一个节点的 ...

  4. BZOJ 1005 明明的烦恼(prufer序列+高精度)

    有一种东西叫树的prufer序列,一个树的与一个prufer序列是一一对应的关系. 设有m个度数确定的点,这些点的度为dee[i],那么每个点在prufer序列中出现了dee[i]-1次. 由排列组合 ...

  5. BZOJ 1005 明明的烦恼 Prufer序列+组合数学+高精度

    题目大意:给定一棵n个节点的树的节点的度数.当中一些度数无限制,求能够生成多少种树 Prufer序列 把一棵树进行下面操作: 1.找到编号最小的叶节点.删除这个节点,然后与这个叶节点相连的点计入序列 ...

  6. BZOJ 1005 [HNOI2008] 明明的烦恼(组合数学 Purfer Sequence)

    题目大意 自从明明学了树的结构,就对奇怪的树产生了兴趣...... 给出标号为 1 到 N 的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? Input 第一行为 N( ...

  7. 【BZOJ】【1005】【HNOI2008】明明的烦恼

    Prufer序列/排列组合+高精度 窝不会告诉你我是先做了BZOJ1211然后才来做这题的>_>(为什么?因为我以前不会高精度呀……) 在A了BZOJ 1211和1089之后,蒟蒻终于有信 ...

  8. BZOJ 1005: [HNOI2008]明明的烦恼 Purfer序列 大数

    1005: [HNOI2008]明明的烦恼 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...

  9. bzoj 1005: [HNOI2008]明明的烦恼 prufer编号&&生成树计数

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2248  Solved: 898[Submit][Statu ...

随机推荐

  1. scrapy 避免被ban

    1.settings.pyCOOKIES_ENABLED = False DOWNLOAD_DELAY = 3 ROBOTSTXT_OBEY = Falseip代理池设置 IPPOOL = [{'ip ...

  2. mysql5.7在windows下面的主从复制配置

    目标:自动同步Master 服务器上面的Demo数据库到Slave 服务器的Demo数据库中. 对于一些操作系统比较强而使用频率又不高的东西,往往好久不去弄就忘记了,所以要经常记录起来,方便日后查阅. ...

  3. EXT3文件系统误删除导致文件系统中的邮件丢失恢复方法

    一.故障描述 由8块盘组成的RAID5, 上层是EXT3文件系统,由于误删除导致文件系统中的邮件丢失 二.镜像磁盘为防止数据恢复过程中由于误操作对原始磁盘造成二次破坏, 使用winhex软件为每块磁盘 ...

  4. 点开GitHub之后,瑟瑟发抖...的我

    我说句实在话啊,GitHub这个网址真的很能勾起人学习的欲望,一进入GitHub的注册页面真的让我这个英语学渣瑟瑟发抖,瞬间立下个flag:好好学习英语..... 我对python的求知欲怎么能被英语 ...

  5. 新概念英语(1-101)A Card From Jimmy

    Lesson 101 A card from Jimmy 吉米的明信片 Listen to the tape then answer this question. Does Grandmother s ...

  6. Spring知识点回顾(08)spring aware

    Spring知识点回顾(08)spring aware BeanNameAware 获得容器中的bean名称 BeanFactoryAware 获得当前的bean factory Applicatio ...

  7. Python学习之条件判断和循环

    #coding= utf-8 # 条件判断和循环 # 如果if语句判断是True,就把缩进的两行print语句执行了,否则,什么也不做 age1 = 20 if age1 >= 18: prin ...

  8. linux下Tab及shell 补全python

    Python自动补全 Python自动补全有vim编辑下和python交互模式下,下面分别介绍如何在这2种情况下实现Tab键自动补全. vim python自动补全插件:pydiction 可以实现下 ...

  9. python——re模块

    python--re模块 一 正则表达式的作用 1.给字符串进行模糊匹配, 2.对象就是字符串 二 字符匹配(普通字符.元字符) 普通字符:数字字符和英文字母和自身匹配 2.元字符:. ^ $ * + ...

  10. python继承——封装

    python继承--封装 1 为什么要封装 封装数据的主要原因是:保护隐私 封装方法的主要原因是:隔离复杂度 2 封装分为两个层面 第一个层面的封装(什么都不用做):创建类和对象会分别创建二者的名称空 ...