来自FallDream的博客,未经允许,请勿转载,谢谢。


Frank对天文学非常感兴趣,他经常用望远镜看星星,同时记录下它们的信息,比如亮度、颜色等等,进而估算出星星的距离,半径等等。Frank不仅喜欢观测,还喜欢分析观测到的数据。他经常分析两个参数之间(比如亮度和半径)是否存在某种关系。现在Frank要分析参数X与Y之间的关系。他有n组观测数据,第i组观测数据记录了x_i和y_i。他需要一下几种操作1 L,R:用直线拟合第L组到底R组观测数据。用xx表示这些观测数据中x的平均数,用yy表示这些观测数据中y的平均数,即
xx=Σx_i/(R-L+1)(L<=i<=R)
yy=Σy_i/(R-L+1)(L<=i<=R)
如果直线方程是y=ax+b,那么a应当这样计算:
a=(Σ(x_i-xx)(y_i-yy))/(Σ(x_i-xx)(x_i-xx)) (L<=i<=R)
你需要帮助Frank计算a。
2 L,R,S,T:Frank发现测量数据第L组到底R组数据有误差,对每个i满足L <= i <= R,x_i需要加上S,y_i需要加上T。
3 L,R,S,T:Frank发现第L组到第R组数据需要修改,对于每个i满足L <= i <= R,x_i需要修改为(S+i),y_i需要修改为(T+i)。
 
展开式子,答案是
$\frac{\sum(xiyi -xyi - yxi + xy)}{\sum (xi^{2} -2xxi + x^{2})}$
所以维护区间的x,y,xy的和就行了。
x^2维不维护比较随意。
计算记得用longdouble  不然会爆掉
#include<iostream>
#include<cstdio>
#define MN 100000
#define ld long double
using namespace std;
inline int read()
{
int x = , f = ; char ch = getchar();
while(ch < '' || ch > ''){ if(ch == '-') f = -; ch = getchar();}
while(ch >= '' && ch <= ''){x = x * + ch - '';ch = getchar();}
return x * f;
} struct data{ld x,y,sqx,xy;
friend data operator + (data a,data b)
{
return (data){a.x+b.x,a.y+b.y,a.sqx+b.sqx,a.xy+b.xy};
}
}res;
struct Mark{int op,s,t;}M[MN+];
struct Tree{int l,r,tag;ld s,t;data x;}T[MN*+];
int n,m,X[MN+],Y[MN+],tms=;
void build(int x,int l,int r)
{
if((T[x].l=l)==(T[x].r=r))
{
T[x].x=(data){X[l],Y[l],(ld)X[l]*X[l],(ld)X[l]*Y[l]};
return;
}
int mid=l+r>>;
build(x<<,l,mid);build(x<<|,mid+,r);
T[x].x=T[x<<].x+T[x<<|].x;
}
inline ld Sum(int x){return (ld)x*(x+)/;}
inline ld Sqr(int x){return (ld)x*(x+)*(*x+)/;}
void _Mark(int x,int op,int s,int t)
{
if(op==){T[x].tag=;T[x].s=s;T[x].t=t;}
else if(T[x].tag) T[x].s+=s,T[x].t+=t;
else T[x].tag=,T[x].s=s,T[x].t=t;
if(op==)
{
T[x].x.sqx+=(ld)*s*T[x].x.x+(ld)(T[x].r-T[x].l+)*s*s;
T[x].x.xy+=(ld)s*T[x].x.y+(ld)t*T[x].x.x+(ld)(T[x].r-T[x].l+)*s*t;
T[x].x.x+=(ld)(T[x].r-T[x].l+)*s;
T[x].x.y+=(ld)(T[x].r-T[x].l+)*t;
}
else
{
T[x].x.x=Sum(T[x].r)-Sum(T[x].l-)+(ld)(T[x].r-T[x].l+)*s;
T[x].x.y=Sum(T[x].r)-Sum(T[x].l-)+(ld)(T[x].r-T[x].l+)*t;
T[x].x.sqx=(ld)(T[x].r-T[x].l+)*s*s+Sqr(T[x].r)-Sqr(T[x].l-)+(ld)*s*(Sum(T[x].r)-Sum(T[x].l-));
T[x].x.xy=(ld)(T[x].r-T[x].l+)*s*t+(ld)(s+t)*(Sum(T[x].r)-Sum(T[x].l-))+Sqr(T[x].r)-Sqr(T[x].l-);
}
} void pushdown(int x)
{
if(T[x].tag)
{
int l=x<<,r=l|;
_Mark(l,T[x].tag,T[x].s,T[x].t);
_Mark(r,T[x].tag,T[x].s,T[x].t);
T[x].tag=;
}
} void Modify(int x,int l,int r,int op)
{
if(T[x].l==l&&T[x].r==r)
{
_Mark(x,M[op].op,M[op].s,M[op].t);
return;
}
pushdown(x);
int mid=T[x].l+T[x].r>>;
if(r<=mid) Modify(x<<,l,r,op);
else if(l>mid) Modify(x<<|,l,r,op);
else Modify(x<<,l,mid,op),Modify(x<<|,mid+,r,op);
T[x].x=T[x<<].x+T[x<<|].x;
} void Query(int x,int l,int r)
{
if(T[x].l==l&&T[x].r==r){res=res+T[x].x;return;}
pushdown(x);
int mid=T[x].l+T[x].r>>;
if(r<=mid) Query(x<<,l,r);
else if(l>mid) Query(x<<|,l,r);
else Query(x<<,l,mid),Query(x<<|,mid+,r);
} main()
{
n=read();m=read();
for(int i=;i<=n;++i)X[i]=read();
for(int i=;i<=n;++i)Y[i]=read();
build(,,n);
for(int i=;i<=m;++i)
{
int op=read(),l=read(),r=read();
if(op==)
{
res=(data){,,,};Query(,l,r);
ld _x=(ld)res.x/(r-l+),_y=(ld)res.y/(r-l+);
ld u=res.xy-_x*res.y-_y*res.x+_x*_y*(r-l+);
ld d=res.sqx-*_x*res.x+_x*_x*(r-l+);
printf("%.8lf\n",(double)u/(double)d);
}
else
{
int s=read(),t=read();
M[i]=(Mark){op,s,t};
Modify(,l,r,i);
}
}
return ;
}

[bzoj4821][Sdoi2017]相关分析的更多相关文章

  1. BZOJ4821 SDOI2017相关分析(线段树)

    纯粹的码农题.维护x的和.y的和.xy的和.x2的和即可.可能会炸long long. #include<iostream> #include<cstdio> #include ...

  2. 【BZOJ4821】[SDOI2017]相关分析(线段树)

    [BZOJ4821][SDOI2017]相关分析(线段树) 题面 BZOJ 洛谷 题解 看看询问要求的东西是什么.把所有的括号拆开,不难发现要求的就是\(\sum x,\sum y,\sum xy,\ ...

  3. 【BZOJ4821】[Sdoi2017]相关分析 线段树

    [BZOJ4821][Sdoi2017]相关分析 Description Frank对天文学非常感兴趣,他经常用望远镜看星星,同时记录下它们的信息,比如亮度.颜色等等,进而估算出星星的距离,半径等等. ...

  4. BZOJ4817 SDOI2017 相关分析

    4821: [Sdoi2017]相关分析 Time Limit: 10 Sec  Memory Limit: 128 MBSec  Special Judge Description Frank对天文 ...

  5. [Sdoi2017]相关分析 [线段树]

    [Sdoi2017]相关分析 题意:沙茶线段树 md其实我考场上还剩一个多小时写了40分 其实当时写正解也可以吧1h也就写完了不过还要拍一下 正解代码比40分短2333 #include <io ...

  6. [题目] Luogu P3707 [SDOI2017]相关分析

    参考资料:[Luogu 3707] SDOI2017 相关分析 P3707 [SDOI2017]相关分析 TFRAC FRAC DFRAC \(\tfrac{\sum}{1}\) \(\frac{\s ...

  7. [Luogu 3707] SDOI2017 相关分析

    [Luogu 3707] SDOI2017 相关分析 前言 Capella 和 Frank 一样爱好天文学. 她常在冬季的夜晚,若有所思地望着东北方上空的五边形中,最为耀眼的一个顶点. 那一抹金黄曾带 ...

  8. 4821: [Sdoi2017]相关分析

    4821: [Sdoi2017]相关分析 链接 分析: 大力拆式子,化简,然后线段树.注意精度问题与爆longlong问题. 代码: #include<cstdio> #include&l ...

  9. P3707 [SDOI2017]相关分析

    P3707 [SDOI2017]相关分析 线段树裸题?但是真的很麻烦QAQ 题目给的式子是什么不用管,大力拆开,就是\(\frac{\sum x_iy_i-\overline xy_i-\overli ...

随机推荐

  1. Hibernate之深入持久化对象

    Hibernate是一个彻底的O/R Mapping 框架.之所以说彻底,是因为相对于其他的 框架 ,如Spring JDBC,iBatis 需要手动的管理SQL语句,Hibernate采用了完全 面 ...

  2. 火车头采集器对接织梦cms图集发布时, 采集网上图片超时的解决方法

    背景介绍: 火车头采集器对接织梦cms图片集发布时, 对于多张(超过30张)大图片时, 经常会出现图集发布超时的情况.  问题分析: 因为php对于资源的处理有默认的超时时间30秒, 而我尝试了好多方 ...

  3. 延迟确认和Nagle算法

    前篇文章介绍了三次握手和四次挥手,了解了TCP是如何建立和断开连接的,文末还提到了抓包挥手时的一个“异常”现象,当时无法解释,特地查了资料,知道了数据传输中的延迟确认策略. 何谓延迟确认策略? WIK ...

  4. Win7添加php环境变量.

    1) "我的电脑"右键"属性"->高级系统设置->环境变量->系统变量->Path->编辑 2) 将PHP的执行路径的目录&quo ...

  5. gogs详细配置

    sudo apt-get update sudo apt-get upgrade sudo adduser git //创建用户  密码 ******* su git//切换到git用户 cd ~   ...

  6. emqtt 试用(六)系统主题

    $SYS-系统主题 EMQ 消息服务器周期性发布自身运行状态.MQTT 协议统计.客户端上下线状态到 $SYS/ 开头系统主题. $SYS 主题路径以 "$SYS/brokers/{node ...

  7. api-gateway实践(15)3.6JL分支和3.7并行改造需求

    一.名称改为"API网关" --哪个地方的名称?二.开发者视图中,API网关显示两个视图. 1. 服务分类视图:支持按照业务分为多个类别,分类方式参照应用服务化的分类:人像比对.自 ...

  8. Linux知识积累(4) Linux下chkconfig命令详解

    Linux下chkconfig命令详解 chkconfig命令主要用来更新(启动或停止)和查询系统服务的运行级信息.谨记chkconfig不是立即自动禁止或激活一个服务,它只是简单的改变了符号连接. ...

  9. 判断一个字符串是不是一个合法的IP地址

    最近在笔试的时候遇到碰一道算法题, 要求判断一个字符串是不是合法的ip地址. 将我的思路发出来分享一下,不一定正确,也不一定是最优的方法.希望能分享一些交流 要求用java或者c来实现,我的java代 ...

  10. python中的进程池:multiprocessing.Pool()

    python中的进程池: 我们可以写出自己希望进程帮助我们完成的任务,然后把任务批量交给进程池 进程池帮助我们创建进程完成任务,不需要我们管理.进程池:利用multiprocessing 下的Pool ...