来自FallDream的博客,未经允许,请勿转载,谢谢。


Frank对天文学非常感兴趣,他经常用望远镜看星星,同时记录下它们的信息,比如亮度、颜色等等,进而估算出星星的距离,半径等等。Frank不仅喜欢观测,还喜欢分析观测到的数据。他经常分析两个参数之间(比如亮度和半径)是否存在某种关系。现在Frank要分析参数X与Y之间的关系。他有n组观测数据,第i组观测数据记录了x_i和y_i。他需要一下几种操作1 L,R:用直线拟合第L组到底R组观测数据。用xx表示这些观测数据中x的平均数,用yy表示这些观测数据中y的平均数,即
xx=Σx_i/(R-L+1)(L<=i<=R)
yy=Σy_i/(R-L+1)(L<=i<=R)
如果直线方程是y=ax+b,那么a应当这样计算:
a=(Σ(x_i-xx)(y_i-yy))/(Σ(x_i-xx)(x_i-xx)) (L<=i<=R)
你需要帮助Frank计算a。
2 L,R,S,T:Frank发现测量数据第L组到底R组数据有误差,对每个i满足L <= i <= R,x_i需要加上S,y_i需要加上T。
3 L,R,S,T:Frank发现第L组到第R组数据需要修改,对于每个i满足L <= i <= R,x_i需要修改为(S+i),y_i需要修改为(T+i)。
 
展开式子,答案是
$\frac{\sum(xiyi -xyi - yxi + xy)}{\sum (xi^{2} -2xxi + x^{2})}$
所以维护区间的x,y,xy的和就行了。
x^2维不维护比较随意。
计算记得用longdouble  不然会爆掉
#include<iostream>
#include<cstdio>
#define MN 100000
#define ld long double
using namespace std;
inline int read()
{
int x = , f = ; char ch = getchar();
while(ch < '' || ch > ''){ if(ch == '-') f = -; ch = getchar();}
while(ch >= '' && ch <= ''){x = x * + ch - '';ch = getchar();}
return x * f;
} struct data{ld x,y,sqx,xy;
friend data operator + (data a,data b)
{
return (data){a.x+b.x,a.y+b.y,a.sqx+b.sqx,a.xy+b.xy};
}
}res;
struct Mark{int op,s,t;}M[MN+];
struct Tree{int l,r,tag;ld s,t;data x;}T[MN*+];
int n,m,X[MN+],Y[MN+],tms=;
void build(int x,int l,int r)
{
if((T[x].l=l)==(T[x].r=r))
{
T[x].x=(data){X[l],Y[l],(ld)X[l]*X[l],(ld)X[l]*Y[l]};
return;
}
int mid=l+r>>;
build(x<<,l,mid);build(x<<|,mid+,r);
T[x].x=T[x<<].x+T[x<<|].x;
}
inline ld Sum(int x){return (ld)x*(x+)/;}
inline ld Sqr(int x){return (ld)x*(x+)*(*x+)/;}
void _Mark(int x,int op,int s,int t)
{
if(op==){T[x].tag=;T[x].s=s;T[x].t=t;}
else if(T[x].tag) T[x].s+=s,T[x].t+=t;
else T[x].tag=,T[x].s=s,T[x].t=t;
if(op==)
{
T[x].x.sqx+=(ld)*s*T[x].x.x+(ld)(T[x].r-T[x].l+)*s*s;
T[x].x.xy+=(ld)s*T[x].x.y+(ld)t*T[x].x.x+(ld)(T[x].r-T[x].l+)*s*t;
T[x].x.x+=(ld)(T[x].r-T[x].l+)*s;
T[x].x.y+=(ld)(T[x].r-T[x].l+)*t;
}
else
{
T[x].x.x=Sum(T[x].r)-Sum(T[x].l-)+(ld)(T[x].r-T[x].l+)*s;
T[x].x.y=Sum(T[x].r)-Sum(T[x].l-)+(ld)(T[x].r-T[x].l+)*t;
T[x].x.sqx=(ld)(T[x].r-T[x].l+)*s*s+Sqr(T[x].r)-Sqr(T[x].l-)+(ld)*s*(Sum(T[x].r)-Sum(T[x].l-));
T[x].x.xy=(ld)(T[x].r-T[x].l+)*s*t+(ld)(s+t)*(Sum(T[x].r)-Sum(T[x].l-))+Sqr(T[x].r)-Sqr(T[x].l-);
}
} void pushdown(int x)
{
if(T[x].tag)
{
int l=x<<,r=l|;
_Mark(l,T[x].tag,T[x].s,T[x].t);
_Mark(r,T[x].tag,T[x].s,T[x].t);
T[x].tag=;
}
} void Modify(int x,int l,int r,int op)
{
if(T[x].l==l&&T[x].r==r)
{
_Mark(x,M[op].op,M[op].s,M[op].t);
return;
}
pushdown(x);
int mid=T[x].l+T[x].r>>;
if(r<=mid) Modify(x<<,l,r,op);
else if(l>mid) Modify(x<<|,l,r,op);
else Modify(x<<,l,mid,op),Modify(x<<|,mid+,r,op);
T[x].x=T[x<<].x+T[x<<|].x;
} void Query(int x,int l,int r)
{
if(T[x].l==l&&T[x].r==r){res=res+T[x].x;return;}
pushdown(x);
int mid=T[x].l+T[x].r>>;
if(r<=mid) Query(x<<,l,r);
else if(l>mid) Query(x<<|,l,r);
else Query(x<<,l,mid),Query(x<<|,mid+,r);
} main()
{
n=read();m=read();
for(int i=;i<=n;++i)X[i]=read();
for(int i=;i<=n;++i)Y[i]=read();
build(,,n);
for(int i=;i<=m;++i)
{
int op=read(),l=read(),r=read();
if(op==)
{
res=(data){,,,};Query(,l,r);
ld _x=(ld)res.x/(r-l+),_y=(ld)res.y/(r-l+);
ld u=res.xy-_x*res.y-_y*res.x+_x*_y*(r-l+);
ld d=res.sqx-*_x*res.x+_x*_x*(r-l+);
printf("%.8lf\n",(double)u/(double)d);
}
else
{
int s=read(),t=read();
M[i]=(Mark){op,s,t};
Modify(,l,r,i);
}
}
return ;
}

[bzoj4821][Sdoi2017]相关分析的更多相关文章

  1. BZOJ4821 SDOI2017相关分析(线段树)

    纯粹的码农题.维护x的和.y的和.xy的和.x2的和即可.可能会炸long long. #include<iostream> #include<cstdio> #include ...

  2. 【BZOJ4821】[SDOI2017]相关分析(线段树)

    [BZOJ4821][SDOI2017]相关分析(线段树) 题面 BZOJ 洛谷 题解 看看询问要求的东西是什么.把所有的括号拆开,不难发现要求的就是\(\sum x,\sum y,\sum xy,\ ...

  3. 【BZOJ4821】[Sdoi2017]相关分析 线段树

    [BZOJ4821][Sdoi2017]相关分析 Description Frank对天文学非常感兴趣,他经常用望远镜看星星,同时记录下它们的信息,比如亮度.颜色等等,进而估算出星星的距离,半径等等. ...

  4. BZOJ4817 SDOI2017 相关分析

    4821: [Sdoi2017]相关分析 Time Limit: 10 Sec  Memory Limit: 128 MBSec  Special Judge Description Frank对天文 ...

  5. [Sdoi2017]相关分析 [线段树]

    [Sdoi2017]相关分析 题意:沙茶线段树 md其实我考场上还剩一个多小时写了40分 其实当时写正解也可以吧1h也就写完了不过还要拍一下 正解代码比40分短2333 #include <io ...

  6. [题目] Luogu P3707 [SDOI2017]相关分析

    参考资料:[Luogu 3707] SDOI2017 相关分析 P3707 [SDOI2017]相关分析 TFRAC FRAC DFRAC \(\tfrac{\sum}{1}\) \(\frac{\s ...

  7. [Luogu 3707] SDOI2017 相关分析

    [Luogu 3707] SDOI2017 相关分析 前言 Capella 和 Frank 一样爱好天文学. 她常在冬季的夜晚,若有所思地望着东北方上空的五边形中,最为耀眼的一个顶点. 那一抹金黄曾带 ...

  8. 4821: [Sdoi2017]相关分析

    4821: [Sdoi2017]相关分析 链接 分析: 大力拆式子,化简,然后线段树.注意精度问题与爆longlong问题. 代码: #include<cstdio> #include&l ...

  9. P3707 [SDOI2017]相关分析

    P3707 [SDOI2017]相关分析 线段树裸题?但是真的很麻烦QAQ 题目给的式子是什么不用管,大力拆开,就是\(\frac{\sum x_iy_i-\overline xy_i-\overli ...

随机推荐

  1. 利用python实现简单登陆注册系统

    #!/usr/bin/env python # -*- coding:utf-8 -*- def login(username,password): ''' :param username:用户名 : ...

  2. Beta冲刺Day3

    项目进展 李明皇 今天解决的进度 完善了程序的运行逻辑(消息提示框等) 明天安排 前后端联动调试 林翔 今天解决的进度 向微信官方申请登录验证session以维护登录态 明天安排 继续完成维护登录态 ...

  3. Fluent Interface(流式接口)

    我最初接触这个概念是读自<<模式-工程化实现及扩展>>,另外有Martin fowler大师 所写http://martinfowler.com/bliki/FluentInt ...

  4. Angular-ui-router+ocLazyLoad.js应用实例

    AngularJS诞生于2009年,由Misko Hevery 等人创建,后为Goole所收购.是一款优秀的前端JS框架.AngularJS有着诸多特性,最为核心的是:MVC,撗块化,自动化双向数据绑 ...

  5. GitHub 上下载单个文件夹

    写代码的一定经常去github上查看.下载一些源码,有时候会想下载一个项目中的一个文件夹里的内容,但是github上只提供了整个项目的下载,而整个项目里东西太多,压缩的文件太大,github的下载速度 ...

  6. JAVA_SE基础——29.构造函数

    黑马程序员入学Blog... jvm创建Java对象时候需要调用构造器,默认是不带参数的.在构造器中,你可以让jvm帮你初始化一些参数或者执行一系列的动作. 它是对象创建中执行的函数,及第一个被执行的 ...

  7. java实现图片压缩

    java实现图片压缩 package Test; import java.awt.Image; import java.awt.image.BufferedImage; import java.io. ...

  8. 可空类型 Nullable<T>

    Nullable<T> 内部实现了显示和隐式转换 显示转换: public static explicit operator T(T? value) { return value.Valu ...

  9. Linux系统把/home重新挂载到其他硬盘或分区

    一开始没有做好规划,导致/home空间不足,再加上分区表不是GPT,导致无法扩展超过2T,因此需要重新划分一块更大的硬盘给/home. 1.把新挂载的4T硬盘进行分区和格式化 2.创建目录 sudo ...

  10. 新概念英语(1-129)Seventy miles an hour

    Lesson 129 Seventy miles an hour 时速70英里 Listen to the tape then answer this question. What does Ann ...