bzoj 2440 (莫比乌斯函数)
题意:找出第k个不是完全平方数的正整数倍的数。
例如 4 9 16 25 36什么的
通过容斥原理,我们减去所有完全数 4有n/4个,但是36这种会被重复减去,
所有我们还需要加上类似36的数,然后你会发现这些数前面的符号和他们开根号的
莫比乌斯函数一样
数据很大有1e9,如果先进行预处理再从头到尾找感觉不现实,考虑使用二分,枚举mid,
然后每次查找1到mid中不是完全平方数的正整数倍的数的个数
Orz:机制的二分使用
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <queue>
#include <vector>
#include <algorithm>
#include <functional>
typedef long long ll;
using namespace std; const int inf = 0x3f3f3f3f;
const int maxn = 1e5;
int tot;
int is_prime[maxn];
int mu[maxn];
int prime[maxn]; void Moblus()
{
tot = 0;
mu[1] = 1;
for(int i = 2; i < maxn; i++)
{
if(!is_prime[i])
{
prime[tot++] = i;
mu[i] = -1;
} for(int j = 0; j < tot && i*prime[j] < maxn; j++)
{
is_prime[i*prime[j]] = 1;
if(i % prime[j])
{
mu[i*prime[j]] = -mu[i];
}
else
{
mu[i*prime[j]] = 0;
break;
}
}
} } ll get_(ll mid)
{
ll num = 0;
for(int i = 1; i*i <= mid; i++)
{
num += (ll)mu[i]*(mid/(i*i));
}
return num;
} int main()
{
int T;
Moblus();
scanf("%d",&T);
while(T--)
{
ll k;
scanf("%lld",&k);
ll l = 1;
ll r = 2*k+1;
while(l <= r)
{
ll mid = (l+r)>>1;
ll num = get_(mid);
if(num < k)
l = mid + 1;
else
r = mid - 1;
}
printf("%lld\n",l);
}
}
bzoj 2440 (莫比乌斯函数)的更多相关文章
- BZOJ 2440 莫比乌斯函数+容斥+二分
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 5473 Solved: 2679[Submit][Sta ...
- 完全平方数 HYSBZ - 2440 (莫比乌斯函数容斥)
完全平方数 HYSBZ - 2440 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平方数.他觉得这些 数看起来很令人难受.由此,他也讨厌所有是完全平方数的正整数倍的数.然而 这丝毫不影响他对其他 ...
- BZOJ 1101 莫比乌斯函数+分块
思路: 题目中的gcd(x,y)=d (x<=a,y<=b)可以转化成 求:gcd(x,y)=1 (1<=x<=a/d 1<=y<=b/d) 设 G(x,y)表示x ...
- BZOJ 2301 莫比乌斯函数+分块
思路: 同BZOJ1101 就是加个容斥 - http://blog.csdn.net/qq_31785871/article/details/54340241 //By SiriusRen #inc ...
- [BZOJ 2440] [中山市选2011] 完全平方数 【二分 + 莫比乌斯函数】
题目链接:BZOJ - 2440 题目分析 首先,通过打表之类的方法可以知道,答案不会超过 2 * k . 那么我们使用二分,对于一个二分的值 x ,求出 [1, x] 之间的可以送出的数有多少个. ...
- BZOJ 2440 [中山市选2011]完全平方数 (二分 + 莫比乌斯函数)
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 4805 Solved: 2325[Submit][Sta ...
- BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数
BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数 题面 找出第k个不是平方数的倍数的数(1不是平方数, \(k \le 10^9\)). 题解 首先二分答案,问题就转化成了求\([ ...
- BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3028 Solved: 1460[Submit][Sta ...
- BZOJ 2440: [中山市选2011]完全平方数( 二分答案 + 容斥原理 + 莫比乌斯函数 )
先二分答案m,<=m的有m-∑(m/pi*pi)+∑(m/pi*pi*pj*pj)-……个符合题意的(容斥原理), 容斥系数就是莫比乌斯函数μ(预处理)... ----------------- ...
随机推荐
- fflush(stdin)与fflush(stdout)
1.fflush(stdin): 作用:清理标准输入流,把多余的未被保存的数据丢掉.. 如: int main() { int num; char str[10]; cin>>num; c ...
- vivado License导入方法与资源获取
前言 以下安装说明基于已经正确安装vivado 笔者操作环境:linux vivado版本:2015.2 vivado License导入方法: 点击菜单栏[Help],选择[Manage Licen ...
- scrapy csvfeed spider
class CsvspiderSpider(CSVFeedSpider): name = 'csvspider' allowed_domains = ['iqianyue.com'] start_ur ...
- vue内置指令详解——小白速会
指令 (Directives) 是带有 v- 前缀的特殊属性,职责是,当表达式的值改变时,将其产生的连带影响,响应式地作用于 DOM. 内置指令 1.v-bind:响应并更新DOM特性:例如:v-bi ...
- 03-移动端开发教程-CSS3新特性(下)
1. CSS3动画 1.1 过渡的缺点 transition的优点在于简单易用,但是它有几个很大的局限. transition需要事件触发,所以没法在网页加载时自动发生. transition是一次性 ...
- 故障公告:IIS应用程序池停止工作造成博客站点无法访问
非常抱歉,今天凌晨博客站点负载均衡中所有3台服务器的IIS应用程序池突然停止工作,造成 1:20-7:45 左右博客站点无法正常访问,由此给您带来很大的麻烦,请您谅解. 服务器操作系统是 Window ...
- EasyUI中easyui-combobox的onchange事件。
html: <select id="cbox" class="easyui-combobox" name="dept" style=& ...
- 流程控制语句(MySQL/MariaDB )
本文目录:1.BEGIN...END2.true和false3.if结构4.case结构5.loop.leave和iterate6.repeat循环7.while循环 MySQL/MariaDB中的符 ...
- Python-字符串及列表操作-Day2
1.数据类型 1.1 变量引出数据类型 变量:用来记录状态变量值的变化就是状态的变化,程序运行的本质就是来处理一系列的变化 1.2 五大基本数据类型: 数字 字符串 列表 元组 字典 1.2.1 数字 ...
- build.gradle & gradle.properties
一.build.gradle buildscript { ext { springBootVersion = '1.5.9.RELEASE' } repositories { maven { cred ...