bzoj 3930: [CQOI2015]选数
Description
我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案。小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一步研究。然而他很快发现工作量太大了,于是向你寻求帮助。你的任务很简单,小z会告诉你一个整数K,你需要回答他最大公约数刚好为K的选取方案有多少个。由于方案数较大,你只需要输出其除以1000000007的余数即可。
Input
输入一行,包含4个空格分开的正整数,依次为N,K,L和H。
Output
输出一个整数,为所求方案数。
解题报告:老套路设\(f_i\)表示gcd为i的方案数,转化为求[L/K,R/K]中互质的数对个数,答案即为\(f_1\),考虑这一题数据范围较大,且\(H-L<=10^5\),那么就需要用到结论:假设N个数不全相同,那么他们的最大公约数小于最大和最小的两个数之差,正确性显然,所以我们把状态改为:\(f_i\)表示选n个互不相同的数,gcd为i的方案数
令L=L/K,R=R/K
那么[L,R]间含i这个因子的数有(R/i)-((L-1)/i)种,所以选n个的方案数一共有\((R/i-(L-1)/i)^n\),再减去所有数都重复的\((R/i-(L-1)/i)\)种,减完之后的值设为\(tot\),然后就是推\(fi\),因为现在的方案只是包含i这个因子,而不是gcd=i的方案,所以还要减去gcd不为i的方案
综上:\(f_i=tot-\sum_{j=i*2}^{j=R-L}f_j\)
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#define RG register
#define il inline
#define iter iterator
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
using namespace std;
typedef long long ll;
const int N=1e5+5,mod=1000000007;
ll qm(ll x,ll k){
ll sum=1;
while(k){
if(k&1)sum*=x,sum%=mod;
x*=x;x%=mod;k>>=1;
}
return sum;
}
ll f[N];
void work()
{
int n,L,R,K;
cin>>n>>K>>L>>R;
bool flg=(L<=K && K<=R);
L--;L/=K;R/=K;int c=R-L;
ll l,r;
for(int i=c;i>=1;i--){
l=L/i;r=R/i;
f[i]=((qm(r-l,n)-(r-l)%mod)+mod)%mod;
for(int j=2;j*i<=c;j++)
f[i]-=f[j*i],f[i]=(f[i]%mod+mod)%mod;
}
f[1]+=flg;f[1]%=mod;
printf("%lld\n",f[1]);
}
int main()
{
work();
return 0;
}
bzoj 3930: [CQOI2015]选数的更多相关文章
- BZOJ 3930: [CQOI2015]选数 递推
3930: [CQOI2015]选数 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pro ...
- 【刷题】BZOJ 3930 [CQOI2015]选数
Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...
- BZOJ 3930: [CQOI2015]选数 莫比乌斯反演
https://www.lydsy.com/JudgeOnline/problem.php?id=3930 https://blog.csdn.net/ws_yzy/article/details/5 ...
- 【递推】BZOJ 3930: [CQOI2015]选数
Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...
- bzoj 3930: [CQOI2015]选数【快速幂+容斥】
参考:https://www.cnblogs.com/iwtwiioi/p/4986316.html 注意区间长度为1e5级别. 则假设n个数不全相同,那么他们的gcd小于最大数-最小数,证明:则gc ...
- bzoj 3930: [CQOI2015]选数【递推】
妙啊 这个题一上来就想的是莫比乌斯反演: \[ f(d)=\sum_{k=1}^{\left \lceil \frac{r}{d} \right \rceil}\mu(k)(\left \lceil ...
- BZOJ 3930: [CQOI2015]选数 莫比乌斯反演 + 杜教筛
求 $\sum_{i=L}^{R}\sum_{i'=L}^{R}....[gcd_{i=1}^{n}(i)==k]$ $\Rightarrow \sum_{i=\frac{L}{k}}^{\fra ...
- 【BZOJ】3930: [CQOI2015]选数
题意 从区间\([L, R]\)选\(N\)个数(可以重复),问这\(N\)个数的最大公约数是\(K\)的方案数.(\(1 \le N, K \le 10^9, 1 \le L \le R \le 1 ...
- 3930: [CQOI2015]选数
Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1958 Solved: 979[Submit][Status][Discuss] Descripti ...
随机推荐
- 读论文系列:Object Detection ECCV2016 SSD
转载请注明作者:梦里茶 Single Shot MultiBox Detector Introduction 一句话概括:SSD就是关于类别的多尺度RPN网络 基本思路: 基础网络后接多层featur ...
- Step by Step 真正从零开始,TensorFlow详细安装入门图文教程!帮你完成那个最难的从0到1
摘要: Step by Step 真正从零开始,TensorFlow详细安装入门图文教程!帮你完成那个最难的从0到1 安装遇到问题请文末留言. 悦动智能公众号:aibbtcom AI这个概念好像突然就 ...
- Mego开发文档 - 数据库建模
数据库建模 我们还提供了一些其他的特性,用于定制化数据库对应的数据结构. 表映射 框架默认会使用CLR类型名称做为实际数据库的表名,当两者不一致时可以使用该特性强制表名称. [Table(" ...
- Angular 学习笔记 ( CDK - Layout )
简单说就是 js 的 media query. 1. BreakpointObserver const layoutChanges = this.breakpointObserver.observe ...
- Python系列-python函数
函数是组织好的,可重复使用的,用来实现单一,或相关联功能的代码段. 函数能提高应用的模块性,和代码的重复利用率.你已经知道Python提供了许多内建函数,比如print().但你也可以自己创建函数,这 ...
- Python学习之list有序集合
# coding=utf-8 # list有序集合 classmate = ['Michael', 'Bob', 'Tracy'] print classmate print len(classmat ...
- CentOS ping www.baidu.com 报错 name or service not know
今天尝试安装了centos系统 玩一玩 刚刚装好的操作系统 ping www.baidu.com的时候 报出 name or service not known 查了好多资料,都没有很好的解决 最后 ...
- mysql 索引学习--多条件等值查询,顺序不同也能应用联合索引啦
以前学习这一块的时候,是说:假设建立了联合索引a+b,那么查询语句也一定要是这个顺序才能应用该索引. 那么实际是怎样呢,经过mysql这么多次版本升级,相信mysql已经给我们做了某些优化. 下面是我 ...
- 清除session信息
session.removeAttribute("sessionname")是清除SESSION里的某个属性. session.invalidate()是让SESSION失 ...
- Linux安装git和maven的详细过程
一.使用yum安装git 当前安装环境是centos6.5 由于在CentOS6的yum源中已经有git的版本了,可以直接使用yum源进行安装 yum -y install git 由于centos6 ...