Description

我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案。小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一步研究。然而他很快发现工作量太大了,于是向你寻求帮助。你的任务很简单,小z会告诉你一个整数K,你需要回答他最大公约数刚好为K的选取方案有多少个。由于方案数较大,你只需要输出其除以1000000007的余数即可。

Input

输入一行,包含4个空格分开的正整数,依次为N,K,L和H。

Output

输出一个整数,为所求方案数。

解题报告:老套路设\(f_i\)表示gcd为i的方案数,转化为求[L/K,R/K]中互质的数对个数,答案即为\(f_1\),考虑这一题数据范围较大,且\(H-L<=10^5\),那么就需要用到结论:假设N个数不全相同,那么他们的最大公约数小于最大和最小的两个数之差,正确性显然,所以我们把状态改为:\(f_i\)表示选n个互不相同的数,gcd为i的方案数

令L=L/K,R=R/K

那么[L,R]间含i这个因子的数有(R/i)-((L-1)/i)种,所以选n个的方案数一共有\((R/i-(L-1)/i)^n\),再减去所有数都重复的\((R/i-(L-1)/i)\)种,减完之后的值设为\(tot\),然后就是推\(fi\),因为现在的方案只是包含i这个因子,而不是gcd=i的方案,所以还要减去gcd不为i的方案

综上:\(f_i=tot-\sum_{j=i*2}^{j=R-L}f_j\)

#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#define RG register
#define il inline
#define iter iterator
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
using namespace std;
typedef long long ll;
const int N=1e5+5,mod=1000000007;
ll qm(ll x,ll k){
ll sum=1;
while(k){
if(k&1)sum*=x,sum%=mod;
x*=x;x%=mod;k>>=1;
}
return sum;
}
ll f[N];
void work()
{
int n,L,R,K;
cin>>n>>K>>L>>R;
bool flg=(L<=K && K<=R);
L--;L/=K;R/=K;int c=R-L;
ll l,r;
for(int i=c;i>=1;i--){
l=L/i;r=R/i;
f[i]=((qm(r-l,n)-(r-l)%mod)+mod)%mod;
for(int j=2;j*i<=c;j++)
f[i]-=f[j*i],f[i]=(f[i]%mod+mod)%mod;
}
f[1]+=flg;f[1]%=mod;
printf("%lld\n",f[1]);
} int main()
{
work();
return 0;
}

bzoj 3930: [CQOI2015]选数的更多相关文章

  1. BZOJ 3930: [CQOI2015]选数 递推

    3930: [CQOI2015]选数 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pro ...

  2. 【刷题】BZOJ 3930 [CQOI2015]选数

    Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...

  3. BZOJ 3930: [CQOI2015]选数 莫比乌斯反演

    https://www.lydsy.com/JudgeOnline/problem.php?id=3930 https://blog.csdn.net/ws_yzy/article/details/5 ...

  4. 【递推】BZOJ 3930: [CQOI2015]选数

    Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...

  5. bzoj 3930: [CQOI2015]选数【快速幂+容斥】

    参考:https://www.cnblogs.com/iwtwiioi/p/4986316.html 注意区间长度为1e5级别. 则假设n个数不全相同,那么他们的gcd小于最大数-最小数,证明:则gc ...

  6. bzoj 3930: [CQOI2015]选数【递推】

    妙啊 这个题一上来就想的是莫比乌斯反演: \[ f(d)=\sum_{k=1}^{\left \lceil \frac{r}{d} \right \rceil}\mu(k)(\left \lceil ...

  7. BZOJ 3930: [CQOI2015]选数 莫比乌斯反演 + 杜教筛

    求 $\sum_{i=L}^{R}\sum_{i'=L}^{R}....[gcd_{i=1}^{n}(i)==k]$   $\Rightarrow \sum_{i=\frac{L}{k}}^{\fra ...

  8. 【BZOJ】3930: [CQOI2015]选数

    题意 从区间\([L, R]\)选\(N\)个数(可以重复),问这\(N\)个数的最大公约数是\(K\)的方案数.(\(1 \le N, K \le 10^9, 1 \le L \le R \le 1 ...

  9. 3930: [CQOI2015]选数

    Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1958  Solved: 979[Submit][Status][Discuss] Descripti ...

随机推荐

  1. Tornado websocket应用

    应用场景 WebSocket 的特点如下 适合服务器主动推送的场景(好友上线,即时聊天信息,火灾警告,股票涨停等) 相对于Ajax和Long poll等轮询技术,它更高效,不耗费网络带宽和计算资源 它 ...

  2. 前端面试题之html

    1.简述<!DOCTYPE> 的作用,标准模式和兼容模式各有什么区别? <!DOCTYPE> 位于文档的第一行,告知浏览器使用哪种规范. 如果不写DOCTYPE,浏览器会进入混 ...

  3. ebtables和iptables与linux bridge的交互

    本文为翻译文,不一定是逐字逐句的翻译,而且中间会加上自己的一点见解,如有理解错误的地方,还请大家指出,我定虚心学习.原文见链接 其中斜体字是自己的理解,建议和ebtables手册和iptables手册 ...

  4. service层报错找不到方法Invalid bound statement (not found)

    报错信息如下 org.apache.ibatis.binding.BindingException: Invalid bound statement (not found): com.imooc.se ...

  5. 使用C#开发Android应用之WebApp

    近段时间了解了一下VS2017开发安卓应用的一些技术,特地把C#开发WebApp的一些过程记录下来, 欢迎大家一起指教.讨论,废话少说,是时候开始表演真正的技术了.. 1.新建空白Android应用 ...

  6. thinkphp框架调用类不存在的方法

    thinkphp框架调用类不存在的方法调用类不存在的方法,不会报错,但是也不会执行,这是根据tp框架里面的一个魔术方法,框架里面一共才十几个魔术方法

  7. phalcon框架命名空间

    命名空间第一影像就是实际上就相当宏定义,就是需要把一个很长的带有路径的类文件指定一个空间,然后就可直接用简单简写模式 当然如果是外部文件需要首先引入外部文件,如果不引入外部文件还是会报错.一般最会出错 ...

  8. JAVA中的Log4j

    Log4j的简介: 使用异常处理机制==>异常 使用debug调试(必须掌握)    System.out.Print(); 001.控制台行数有限制        002.影响性能      ...

  9. linux下的Shell编程(3)shell里的流程控制

    if 语句 if 表达式如果条件命令组为真,则执行 then 后的部分.标准形式: if 判断命令,可以有很多个,真假取最后的返回值 then 如果前述为真做什么 [ # 方括号代表可选,别真打进去了 ...

  10. html标记语言 --超链接

    html标记语言 --超链接 四.超链接 1. 基本语法 <a href="" target="打开方式" name="页面锚点名称" ...