Description

我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案。小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一步研究。然而他很快发现工作量太大了,于是向你寻求帮助。你的任务很简单,小z会告诉你一个整数K,你需要回答他最大公约数刚好为K的选取方案有多少个。由于方案数较大,你只需要输出其除以1000000007的余数即可。

Input

输入一行,包含4个空格分开的正整数,依次为N,K,L和H。

Output

输出一个整数,为所求方案数。

解题报告:老套路设\(f_i\)表示gcd为i的方案数,转化为求[L/K,R/K]中互质的数对个数,答案即为\(f_1\),考虑这一题数据范围较大,且\(H-L<=10^5\),那么就需要用到结论:假设N个数不全相同,那么他们的最大公约数小于最大和最小的两个数之差,正确性显然,所以我们把状态改为:\(f_i\)表示选n个互不相同的数,gcd为i的方案数

令L=L/K,R=R/K

那么[L,R]间含i这个因子的数有(R/i)-((L-1)/i)种,所以选n个的方案数一共有\((R/i-(L-1)/i)^n\),再减去所有数都重复的\((R/i-(L-1)/i)\)种,减完之后的值设为\(tot\),然后就是推\(fi\),因为现在的方案只是包含i这个因子,而不是gcd=i的方案,所以还要减去gcd不为i的方案

综上:\(f_i=tot-\sum_{j=i*2}^{j=R-L}f_j\)

#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#define RG register
#define il inline
#define iter iterator
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
using namespace std;
typedef long long ll;
const int N=1e5+5,mod=1000000007;
ll qm(ll x,ll k){
ll sum=1;
while(k){
if(k&1)sum*=x,sum%=mod;
x*=x;x%=mod;k>>=1;
}
return sum;
}
ll f[N];
void work()
{
int n,L,R,K;
cin>>n>>K>>L>>R;
bool flg=(L<=K && K<=R);
L--;L/=K;R/=K;int c=R-L;
ll l,r;
for(int i=c;i>=1;i--){
l=L/i;r=R/i;
f[i]=((qm(r-l,n)-(r-l)%mod)+mod)%mod;
for(int j=2;j*i<=c;j++)
f[i]-=f[j*i],f[i]=(f[i]%mod+mod)%mod;
}
f[1]+=flg;f[1]%=mod;
printf("%lld\n",f[1]);
} int main()
{
work();
return 0;
}

bzoj 3930: [CQOI2015]选数的更多相关文章

  1. BZOJ 3930: [CQOI2015]选数 递推

    3930: [CQOI2015]选数 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pro ...

  2. 【刷题】BZOJ 3930 [CQOI2015]选数

    Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...

  3. BZOJ 3930: [CQOI2015]选数 莫比乌斯反演

    https://www.lydsy.com/JudgeOnline/problem.php?id=3930 https://blog.csdn.net/ws_yzy/article/details/5 ...

  4. 【递推】BZOJ 3930: [CQOI2015]选数

    Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...

  5. bzoj 3930: [CQOI2015]选数【快速幂+容斥】

    参考:https://www.cnblogs.com/iwtwiioi/p/4986316.html 注意区间长度为1e5级别. 则假设n个数不全相同,那么他们的gcd小于最大数-最小数,证明:则gc ...

  6. bzoj 3930: [CQOI2015]选数【递推】

    妙啊 这个题一上来就想的是莫比乌斯反演: \[ f(d)=\sum_{k=1}^{\left \lceil \frac{r}{d} \right \rceil}\mu(k)(\left \lceil ...

  7. BZOJ 3930: [CQOI2015]选数 莫比乌斯反演 + 杜教筛

    求 $\sum_{i=L}^{R}\sum_{i'=L}^{R}....[gcd_{i=1}^{n}(i)==k]$   $\Rightarrow \sum_{i=\frac{L}{k}}^{\fra ...

  8. 【BZOJ】3930: [CQOI2015]选数

    题意 从区间\([L, R]\)选\(N\)个数(可以重复),问这\(N\)个数的最大公约数是\(K\)的方案数.(\(1 \le N, K \le 10^9, 1 \le L \le R \le 1 ...

  9. 3930: [CQOI2015]选数

    Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1958  Solved: 979[Submit][Status][Discuss] Descripti ...

随机推荐

  1. Python之旅.第三章.函数4.01/4.02

    一.三元表达式 #普通的判断大小函数def max2(x,y): if x > y: return x else: return yres=max2(10,11)print(res)x=12y= ...

  2. 微信浏览器的页面在PC端访问

    微信浏览器的页面在PC端访问: 普通的在微信浏览器看的页面如果不在php代码中解析一下,然后复制链接在PC打开就出现无法访问,因为它复制的地址是: https://open.weixin.qq.com ...

  3. IIS 配置 FTP 网站

    在 服务器管理器 的 Web服务器IIS 上安装 FTP 服务 在 IIS管理器 添加FTP网站 配置防火墙规则 说明:服务器环境是Windows Server 2008 R2,IIS7.5. 1. ...

  4. AngularJS1.X学习笔记10-自定义指令(下)

    继续继续,学完这个部分就去吃饭.引用自由男人的话作为本文的开始:“默认情况下,链接函数被传入了控制器的作用域,而该控制器管理着的视图包含了指令所应用到的元素”.果然像是绕口令,还是看看你的例子比较好. ...

  5. Hey,man,are you ok? -- 关于心跳、故障监测、lease机制

    电话之于短信.微信的一个很大的不同点在于,前者更加及时,有更快速直接的反馈:而后面两个虽然称之为instant message,但经常时发出去了就得等对方回复,等多久是不确定的.打电话能明确知道对方在 ...

  6. 解决IE下a标签点击有虚线边框的问题

    解决IE下a标签点击有虚线边框的问题 关键词:IE去除虚线边框.IE解决a标签虚线问题 先看看IE下,a标签出现的虚线边框问题: (上面中,红线包裹的就是一个翻页的按钮,按钮实际是hml的a标签做的, ...

  7. MHA 安装与简单使用

    MHA 在过去几年一直用的比较火,特别是在在传统复制的那个年代.至从有了GTID好像我们也可以把MHA给忘记了,但是很多企业现在还是在用的比较多.每个公司的MHA玩法也不太一样,但是本质都是差不多了. ...

  8. CRC 校验

    匠心零度 转载请注明原创出处,谢谢! 说明 上篇RocketMQ(二):RPC通讯介绍了rocketmq的一些rpc细节,其实这些内容不仅仅是rocketmq内容,任何通信模块基本都是类似的,这块内容 ...

  9. 项目实战15—企业级堡垒机 jumpserver

    本文收录在Linux运维企业架构实战系列 环境准备 系统:CentOS 7 IP:192.168.10.101 关闭selinux 和防火墙 # CentOS $ setenforce # 可以设置配 ...

  10. ShellCode瘦身的艺术0_HASH

    写在前面的话: 前面几篇文章,我们介绍了如何获取kernerl32.dll导出函数地址的方法: 并在此基础上,编写了ShellCode,实现了动态加载DLL以及解析API地址: 但是,似乎还称不上Pe ...