poj 3264

Sample Input

6 3
1
7
3
4
2
5
1 5
4 6
2 2

Sample Output

6
3
0

求任一区间的最大值和最小值的差

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
using namespace std;
#define N 50005
#define mod 258280327
#define MIN 0
#define MAX 1000001
struct node
{
int val,maxn,minx;
int Left,Right;
} pnode[4*N];
int a[N];
int tmax,tmin;
void build(int i,int l,int r)
{
pnode[i].Left = l;
pnode[i].Right = r;
pnode[i].maxn = MIN;
pnode[i].minx = MAX;
if(l == r)
return;
build(i*2,l ,(l+r)/2);
build(i*2+1, (l+r)/2 + 1,r);
} void insert(int i,int index,int va)
{
if(pnode[index].Left == pnode[index].Right)
{
pnode[index].maxn = pnode[index].minx = va;
return ;
}
pnode[index].maxn = max(pnode[index].maxn,va);
pnode[index].minx = min(pnode[index].minx,va);
int mid = (pnode[index].Left+pnode[index].Right)/2;
if (mid >= i)
insert(i,index*2,va);
else
insert(i,index*2+1, va);
} void query(int u,int l,int r,int a,int b)
{
// if(pnode[u].minx >= tmin && pnode[u].maxn < tmax)
// return;
if(a == l && b == r)
{
if(tmax < pnode[u].maxn)
tmax = pnode[u].maxn;
if(tmin > pnode[u].minx)
tmin = pnode[u].minx;
return ;
} int mid = (l + r)>>1;
if (mid >= b)
query(u*2,l, mid, a, b);
else if (mid < a)
query(u*2+1,mid+1, r, a, b);
else
{
query(u*2,l, mid, a, mid);
query( u*2+1,mid+1, r, mid+1, b);
}
} int main()
{
int n,m;
scanf("%d%d",&n,&m);
build(1,1,n);
for(int i = 1; i <= n; i++)
{
scanf("%d",&a[i]);
insert(i,1,a[i]);
} for(int i = 1; i <= m; i++)
{
int x,y;
tmax = -MAX;
tmin = MAX;
scanf("%d%d",&x,&y);
query(1,1,n,x,y);
printf("%d\n",tmax-tmin);
} return 0;
}

  

poj 3468

Sample Input

10 5
1 2 3 4 5 6 7 8 9 10
Q 4 4
Q 1 10
Q 2 4
C 3 6 3
Q 2 4

Sample Output

4
55
9
15

①对区间i - j 的数全加上c ;   ②求区间的和

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
using namespace std;
typedef long long ll;
#define N 100005
#define mod 258280327
#define MIN 0
#define MAX 1000001 struct node
{
ll val,els;
int Left,Right;
} pnode[4*N]; int a[N];
int tmax,tmin;
void build(int i,int l,int r)
{
pnode[i].Left = l;
pnode[i].Right = r;
pnode[i].val = 0;
pnode[i].els = 0;
if(l == r)
return;
build(i*2,l ,(l+r)/2);
build(i*2+1, (l+r)/2 + 1,r);
} void insert(int i,int index,int va)
{
if(pnode[index].Left == pnode[index].Right)
{
pnode[index].val = va;
return ;
}
pnode[index].val+=va;
int mid = (pnode[index].Left+pnode[index].Right)/2;
if (mid >= i)
insert(i,index*2,va);
else
insert(i,index*2+1, va);
} void add(int u,int l,int r,ll c,int a,int b)
{
if(a == l && b == r)
{
pnode[u].els += c;
return ;
}
pnode[u].val += (b-a+1)*c; //让大于a,b的部分加上
if(l == r)
return ;
int mid = (l + r)>>1;
if (mid >= b)
add(u*2,l, mid, c, a, b);
else if (mid < a)
add(u*2+1,mid+1, r, c, a, b);
else
{
add(u*2,l, mid , c,a, mid);
add(u*2+1,mid+1, r,c, mid+1, b);
}
} long long query(int u,int l,int r,int a,int b)
{
if(a == l && b == r)
{
return pnode[u].val + (pnode[u].Right - pnode[u].Left + 1)*pnode[u].els;
}
pnode[u].val += (pnode[u].Right - pnode[u].Left + 1)*pnode[u].els;
//当取了a,b的附加值后,将其附加值往下放
add(u*2,pnode[u].Left,(pnode[u].Left + pnode[u].Right)/2,pnode[u].els,pnode[u].Left,(pnode[u].Left + pnode[u].Right)/2);
add(u*2+1,(pnode[u].Left+pnode[u].Right)/2+1,pnode[u].Right,pnode[u].els,(pnode[u].Left+pnode[u].Right)/2+1,pnode[u].Right);
pnode[u].els = 0;
int mid = (l + r)>>1;
if (mid >= b)
return query(u*2,l, mid, a, b);
else if (mid < a)
return query(u*2+1,mid+1, r, a, b);
else
{
return query(u*2,l, mid, a, mid)+query( u*2+1,mid+1, r, mid+1, b);
}
} int main()
{
int n,m,l,r,c;
char ch;
while(scanf("%d%d",&n,&m)!= EOF)
{
build(1,1,n);
for(int i = 1; i <= n; i++)
{
scanf("%d",&a[i]);
insert(i,1,a[i]);
} for(int i = 1; i <= m; i++)
{
getchar();
ch = getchar();
if(ch == 'Q')
{
scanf("%d%d",&l,&r);
printf("%I64d\n",query(1,1,n,l,r));
}
if(ch == 'C')
{
scanf("%d%d%d",&l,&r,&c);
add(1,1,n,c,l,r);
}
}
}
return 0;
}

  

poj 3264 & poj 3468(线段树)的更多相关文章

  1. poj 3264 Balanced Lineup(线段树、RMQ)

    题目链接: http://poj.org/problem?id=3264 思路分析: 典型的区间统计问题,要求求出某段区间中的极值,可以使用线段树求解. 在线段树结点中存储区间中的最小值与最大值:查询 ...

  2. POJ 3264 Balanced Lineup 线段树RMQ

    http://poj.org/problem?id=3264 题目大意: 给定N个数,还有Q个询问,求每个询问中给定的区间[a,b]中最大值和最小值之差. 思路: 依旧是线段树水题~ #include ...

  3. [POJ] 3264 Balanced Lineup [线段树]

    Balanced Lineup Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 34306   Accepted: 16137 ...

  4. poj 3264(RMQ或者线段树)

    Balanced Lineup Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 42929   Accepted: 20184 ...

  5. POJ 3264 Balanced Lineup 线段树 第三题

    Balanced Lineup Description For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line ...

  6. POJ - 3264 Balanced Lineup 线段树解RMQ

    这个题目是一个典型的RMQ问题,给定一个整数序列,1~N,然后进行Q次询问,每次给定两个整数A,B,(1<=A<=B<=N),求给定的范围内,最大和最小值之差. 解法一:这个是最初的 ...

  7. POJ 3264 Balanced Lineup (线段树)

    Balanced Lineup For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the s ...

  8. poj 3468(线段树)

    http://poj.org/problem?id=3468 题意:给n个数字,从A1 …………An m次命令,Q是查询,查询a到b的区间和,c是更新,从a到b每个值都增加x.思路:这是一个很明显的线 ...

  9. hdu 1698+poj 3468 (线段树 区间更新)

    http://acm.hdu.edu.cn/showproblem.php?pid=1698 这个题意翻译起来有点猥琐啊,还是和谐一点吧 和涂颜色差不多,区间初始都为1,然后操作都是将x到y改为z,注 ...

随机推荐

  1. 详谈C++虚函数表那回事(多重继承关系)

    上一篇说了一般继承,也就是单继承的虚函数表,接下来说说多重继承的虚函数表: 1.无虚函数覆盖的多重继承: 代码: #pragma once //无覆盖,多重继承 class Base1 { publi ...

  2. nyoj 韩信点兵

    描述相传韩信才智过人,从不直接清点自己军队的人数,只要让士兵先后以三人一排.五人一排.七人一排地变换队形,而他每次只掠一眼队伍的排尾就知道总人数了.输入3个非负整数a,b,c ,表示每种队形排尾的人数 ...

  3. sublime安装 和 插件安装

    先从官网下载sublime   https://www.sublimetext.com/3 安装完毕后 快捷键ctrl+` 或者View->Show Console,输入如下代码(sublime ...

  4. EasyUI中Tabs添加远程数据的方法。

    tabs加载远程数据: $(function () { $("#btnquery").click(function () { if (!$("#tcontent" ...

  5. Python设计TFTP客户端

    #coding=utf-8 from socket import * from threading import Thread import struct def recvData(fileName, ...

  6. Ubuntu16.04 + Zabbix 3.4.7 邮件报警设置

    部署了Zabbix,需要配置邮件报警,在网上找了一些教程,大多是是用的CentOS + Zabbix 2.x版本的,而且还要写脚本,感觉太麻烦了,所以自己结合其他文章摸索了一套配置方法. 先说一下环境 ...

  7. wordpress | WP Mail SMTP使用QQ邮箱发布失败的解决办法

    在使用contact form 7插件时遇到邮件发送失败的问题,经过检查发现是因为服务器不支持mail()函数,判断是否支持mail()函数可以参考http://www.diyzhan.com/201 ...

  8. HTTP协议的消息头:Content-Type和Accept的作用

    一.背景知识 1.概述 Http报头分为通用报头,请求报头,响应报头和实体报头. 请求方的http报头结构:通用报头|请求报头|实体报头 响应方的http报头结构:通用报头|响应报头|实体报头 Acc ...

  9. 用js来实现那些数据结构(数组篇02)

    上一篇文章简单的介绍了一下js的类型,以及数组的增删方法.这一篇文章,我们一起来看看数组还有哪些用法,以及在实际工作中我们可以用这些方法来做些什么.由于其中有部分内容并不常用,所以我尽量缩小篇幅.在这 ...

  10. PyQt5--基础篇:用eric6工具实现三级联动效果

    今天给大家介绍下python gui界面的三级联动效果,我们用工具eric6来实现,先看下效果图. 首先我们先创建项目linkage,再新建窗体进入到Qt设计师工具开始设计界面,完成后保存并退出. 在 ...