poj 3264 & poj 3468(线段树)
poj 3264
Sample Input
6 3
1
7
3
4
2
5
1 5
4 6
2 2
Sample Output
6
3
0
求任一区间的最大值和最小值的差
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
using namespace std;
#define N 50005
#define mod 258280327
#define MIN 0
#define MAX 1000001
struct node
{
int val,maxn,minx;
int Left,Right;
} pnode[4*N];
int a[N];
int tmax,tmin;
void build(int i,int l,int r)
{
pnode[i].Left = l;
pnode[i].Right = r;
pnode[i].maxn = MIN;
pnode[i].minx = MAX;
if(l == r)
return;
build(i*2,l ,(l+r)/2);
build(i*2+1, (l+r)/2 + 1,r);
} void insert(int i,int index,int va)
{
if(pnode[index].Left == pnode[index].Right)
{
pnode[index].maxn = pnode[index].minx = va;
return ;
}
pnode[index].maxn = max(pnode[index].maxn,va);
pnode[index].minx = min(pnode[index].minx,va);
int mid = (pnode[index].Left+pnode[index].Right)/2;
if (mid >= i)
insert(i,index*2,va);
else
insert(i,index*2+1, va);
} void query(int u,int l,int r,int a,int b)
{
// if(pnode[u].minx >= tmin && pnode[u].maxn < tmax)
// return;
if(a == l && b == r)
{
if(tmax < pnode[u].maxn)
tmax = pnode[u].maxn;
if(tmin > pnode[u].minx)
tmin = pnode[u].minx;
return ;
} int mid = (l + r)>>1;
if (mid >= b)
query(u*2,l, mid, a, b);
else if (mid < a)
query(u*2+1,mid+1, r, a, b);
else
{
query(u*2,l, mid, a, mid);
query( u*2+1,mid+1, r, mid+1, b);
}
} int main()
{
int n,m;
scanf("%d%d",&n,&m);
build(1,1,n);
for(int i = 1; i <= n; i++)
{
scanf("%d",&a[i]);
insert(i,1,a[i]);
} for(int i = 1; i <= m; i++)
{
int x,y;
tmax = -MAX;
tmin = MAX;
scanf("%d%d",&x,&y);
query(1,1,n,x,y);
printf("%d\n",tmax-tmin);
} return 0;
}
poj 3468
Sample Input
10 5
1 2 3 4 5 6 7 8 9 10
Q 4 4
Q 1 10
Q 2 4
C 3 6 3
Q 2 4
Sample Output
4
55
9
15
①对区间i - j 的数全加上c ; ②求区间的和
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
using namespace std;
typedef long long ll;
#define N 100005
#define mod 258280327
#define MIN 0
#define MAX 1000001 struct node
{
ll val,els;
int Left,Right;
} pnode[4*N]; int a[N];
int tmax,tmin;
void build(int i,int l,int r)
{
pnode[i].Left = l;
pnode[i].Right = r;
pnode[i].val = 0;
pnode[i].els = 0;
if(l == r)
return;
build(i*2,l ,(l+r)/2);
build(i*2+1, (l+r)/2 + 1,r);
} void insert(int i,int index,int va)
{
if(pnode[index].Left == pnode[index].Right)
{
pnode[index].val = va;
return ;
}
pnode[index].val+=va;
int mid = (pnode[index].Left+pnode[index].Right)/2;
if (mid >= i)
insert(i,index*2,va);
else
insert(i,index*2+1, va);
} void add(int u,int l,int r,ll c,int a,int b)
{
if(a == l && b == r)
{
pnode[u].els += c;
return ;
}
pnode[u].val += (b-a+1)*c; //让大于a,b的部分加上
if(l == r)
return ;
int mid = (l + r)>>1;
if (mid >= b)
add(u*2,l, mid, c, a, b);
else if (mid < a)
add(u*2+1,mid+1, r, c, a, b);
else
{
add(u*2,l, mid , c,a, mid);
add(u*2+1,mid+1, r,c, mid+1, b);
}
} long long query(int u,int l,int r,int a,int b)
{
if(a == l && b == r)
{
return pnode[u].val + (pnode[u].Right - pnode[u].Left + 1)*pnode[u].els;
}
pnode[u].val += (pnode[u].Right - pnode[u].Left + 1)*pnode[u].els;
//当取了a,b的附加值后,将其附加值往下放
add(u*2,pnode[u].Left,(pnode[u].Left + pnode[u].Right)/2,pnode[u].els,pnode[u].Left,(pnode[u].Left + pnode[u].Right)/2);
add(u*2+1,(pnode[u].Left+pnode[u].Right)/2+1,pnode[u].Right,pnode[u].els,(pnode[u].Left+pnode[u].Right)/2+1,pnode[u].Right);
pnode[u].els = 0;
int mid = (l + r)>>1;
if (mid >= b)
return query(u*2,l, mid, a, b);
else if (mid < a)
return query(u*2+1,mid+1, r, a, b);
else
{
return query(u*2,l, mid, a, mid)+query( u*2+1,mid+1, r, mid+1, b);
}
} int main()
{
int n,m,l,r,c;
char ch;
while(scanf("%d%d",&n,&m)!= EOF)
{
build(1,1,n);
for(int i = 1; i <= n; i++)
{
scanf("%d",&a[i]);
insert(i,1,a[i]);
} for(int i = 1; i <= m; i++)
{
getchar();
ch = getchar();
if(ch == 'Q')
{
scanf("%d%d",&l,&r);
printf("%I64d\n",query(1,1,n,l,r));
}
if(ch == 'C')
{
scanf("%d%d%d",&l,&r,&c);
add(1,1,n,c,l,r);
}
}
}
return 0;
}
poj 3264 & poj 3468(线段树)的更多相关文章
- poj 3264 Balanced Lineup(线段树、RMQ)
题目链接: http://poj.org/problem?id=3264 思路分析: 典型的区间统计问题,要求求出某段区间中的极值,可以使用线段树求解. 在线段树结点中存储区间中的最小值与最大值:查询 ...
- POJ 3264 Balanced Lineup 线段树RMQ
http://poj.org/problem?id=3264 题目大意: 给定N个数,还有Q个询问,求每个询问中给定的区间[a,b]中最大值和最小值之差. 思路: 依旧是线段树水题~ #include ...
- [POJ] 3264 Balanced Lineup [线段树]
Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 34306 Accepted: 16137 ...
- poj 3264(RMQ或者线段树)
Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 42929 Accepted: 20184 ...
- POJ 3264 Balanced Lineup 线段树 第三题
Balanced Lineup Description For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line ...
- POJ - 3264 Balanced Lineup 线段树解RMQ
这个题目是一个典型的RMQ问题,给定一个整数序列,1~N,然后进行Q次询问,每次给定两个整数A,B,(1<=A<=B<=N),求给定的范围内,最大和最小值之差. 解法一:这个是最初的 ...
- POJ 3264 Balanced Lineup (线段树)
Balanced Lineup For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the s ...
- poj 3468(线段树)
http://poj.org/problem?id=3468 题意:给n个数字,从A1 …………An m次命令,Q是查询,查询a到b的区间和,c是更新,从a到b每个值都增加x.思路:这是一个很明显的线 ...
- hdu 1698+poj 3468 (线段树 区间更新)
http://acm.hdu.edu.cn/showproblem.php?pid=1698 这个题意翻译起来有点猥琐啊,还是和谐一点吧 和涂颜色差不多,区间初始都为1,然后操作都是将x到y改为z,注 ...
随机推荐
- 20162317袁逸灏 第八周实验报告:实验二 Java面向对象程序设计
20162317袁逸灏 第八周实验报告:实验二 Java面向对象程序设计 实验内容 初步掌握单元测试和TDD 理解并掌握面向对象三要素:封装.继承.多态 初步掌握UML建模 熟悉S.O.L.I.D原则 ...
- 作业07-Java GUI编程
1. 本周学习总结 1.1 思维导图:Java图形界面总结 1.2 可选:使用常规方法总结其他上课内容. 关于事件.事件源.事件监听器的总结: 事件:用户在GUI上进行的操作,如鼠标单击.输入文字.关 ...
- 点击tableViewCell,调用打电话的功能
对于点击tableViewCell,调用打电话的功能,按照一般的方法,使用Appdelegate的OpenUrl的方法,使用前先使用UIAlertView展示,让用户选择是否拨打,但是发现了个简单的方 ...
- openlayers调用瓦片地图分析
网上有诸多资料介绍openlayers如何调用百度地图或者是天地图等常见互联网地图,本文作者使用的是不是常见的互联网瓦片,现将调用过程进行整理与大家分享. 首先,openlayers就不赘述了(官网: ...
- 通过URL传递PDF名称参数显示PDF
1 <%@ page language="java" import="java.util.*,java.io.*" 2 pageEncoding=&quo ...
- 【转】支持向量机(SVM)
什么是支持向量机(SVM)? SVM 是一种有监督的机器学习算法,可用于分类或回归问题.它使用一种称为核函数(kernel)的技术来变换数据,然后基于这种变换,算法找到预测可能的两种分类之间的最佳边界 ...
- Spring Security 入门(1-5)Spring Security - 匿名认证
匿名认证 对于匿名访问的用户,Spring Security 支持为其建立一个匿名的 AnonymousAuthenticationToken 存放在 SecurityContextHolder 中, ...
- 云+社区技术沙龙:Kafka meetup 深圳站报名开启
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 如果说 2018 年是技术大爆炸年,那么 Apache Kafka 绝对是其中闪亮的新星. 自Kafka 从首发之日起,已经走过了快八个年头 ...
- python/Django(增、删、改、查)操作
python/Django(增.删.改.查)操作 我们要通过pycharm中的Django模块连接MySQL数据库进行对数据的操作. 一.创建Django项目(每创建一个项目都要进行以下设置) 1.如 ...
- python/数据库操作补充—模板—Session
python/数据库操作补充—模板—Session 一.创建一个app目录 在models.py只能类进行进行创建表 class Foo: xx= 字段(数据库数据类型) 字段类型 字符串 Email ...