【深度学习篇】---CNN和RNN结合与对比,实例讲解
一、前述
CNN和RNN几乎占据着深度学习的半壁江山,所以本文将着重讲解CNN+RNN的各种组合方式,以及CNN和RNN的对比。
二、CNN与RNN对比
1、CNN卷积神经网络与RNN递归神经网络直观图
2、相同点:
2.1. 传统神经网络的扩展。
2.2. 前向计算产生结果,反向计算模型更新。
2.3. 每层神经网络横向可以多个神经元共存,纵向可以有多层神经网络连接。
3、不同点
3.1. CNN空间扩展,神经元与特征卷积;RNN时间扩展,神经元与多个时间输出计算
3.2. RNN可以用于描述时间上连续状态的输出,有记忆功能,CNN用于静态输出
3. 3. CNN高级100+深度,RNN深度有限
三、CNN+RNN组合方式
1. CNN 特征提取,用于RNN语句生成图片标注。
2. RNN特征提取用于CNN内容分类视频分类。
3. CNN特征提取用于对话问答图片问答。
四、具体应用
1、图片标注
基本思路
目标是产生标注的语句,是一个语句生成的任务,LSTM?
描述的对象大量图像信息,图像信息表达,CNN?
CNN网络中全连接层特征描述图片,特征与LSTM输入结合。
具体步骤:
1.1 模型设计-特征提取
全连接层特征用来描述原图片
LSTM输入:word+图片特征;输出下一word。
1.2 模型设计-数据准备
1. 图片CNN特征提取
2. 图片标注生成Word2Vect 向量
3. 生成训练数据:图片特征+第n单词向量:第n+1单词向量。
1.3 模型训练:
1. 运用迁移学习,CNN特征,语句特征应用已有模型
2. 最终的输出模型是LSTM,训练过程的参数设定:梯度上限(gradient clipping), 学习率调整(adaptivelearning)
3. 训练时间很长。
1.4 模型运行:
1. CNN特征提取
2. CNN 特征+语句开头,单词逐个预测
2、视频行为识别 :
视频中在发 生什么?
2.1常用方法总结:
RNN用于CNN特征融合
1. CNN 特征提取
2. LSTM判断
3. 多次识别结果分析。
不同的特征不同输出。
或者:所有特征作为一个输出。
2.2 RNN用于CNN特征筛选+融合:
1. 并不是所有的视频 图像包含确定分类信息
2. RNN用于确定哪些frame 是有用的
3. 对有用的图像特征 融合。
2.3 RNN用于,目标检测:
1. CNN直接产生目标候选区
2. LSTM对产生候选区融合(相邻时刻位置近 似)
3. 确定最终的精确位置。
2.4 多种模型综合:
竞赛/应用中,为了产生最好结果,多采用 多模型ensemble形式。
3、图片/视频问答
3.1 问题种类
3.2 图片问答意义
1. 是对纯文本语言问答系统的扩展
2. 图片理解和语言处理的深度融合
3. 提高人工智能应用范围-观察,思考,表达
我的博客即将搬运同步至腾讯云+社区,邀请大家一同入驻:https://cloud.tencent.com/developer/support-plan?invite_code=1wzcx9d4ww853
【深度学习篇】---CNN和RNN结合与对比,实例讲解的更多相关文章
- [转] 用深度学习(CNN RNN Attention)解决大规模文本分类问题 - 综述和实践
转自知乎上看到的一篇很棒的文章:用深度学习(CNN RNN Attention)解决大规模文本分类问题 - 综述和实践 近来在同时做一个应用深度学习解决淘宝商品的类目预测问题的项目,恰好硕士毕业时论文 ...
- 深度学习入门: CNN与LSTM(RNN)
1. 理解深度学习与CNN: 台湾李宏毅教授的入门视频<一天搞懂深度学习>:https://www.bilibili.com/video/av16543434/ 其中对CNN算法的矩阵卷积 ...
- 深度学习之循环神经网络RNN概述,双向LSTM实现字符识别
深度学习之循环神经网络RNN概述,双向LSTM实现字符识别 2. RNN概述 Recurrent Neural Network - 循环神经网络,最早出现在20世纪80年代,主要是用于时序数据的预测和 ...
- 深度学习之 cnn 进行 CIFAR10 分类
深度学习之 cnn 进行 CIFAR10 分类 import torchvision as tv import torchvision.transforms as transforms from to ...
- 深度学习篇——Tensorflow配置(傻瓜安装模式)
前言 如果你是一个完美主义者,那么请绕过此文,请参考<深度学习篇——Tensorflow配置(完美主义模式)> 安装 pip install tensorflow ok,只要不报错,安装就 ...
- 【深度学习】CNN 中 1x1 卷积核的作用
[深度学习]CNN 中 1x1 卷积核的作用 最近研究 GoogLeNet 和 VGG 神经网络结构的时候,都看见了它们在某些层有采取 1x1 作为卷积核,起初的时候,对这个做法很是迷惑,这是因为之前 ...
- 用深度学习(CNN RNN Attention)解决大规模文本分类问题 - 综述和实践
https://zhuanlan.zhihu.com/p/25928551 近来在同时做一个应用深度学习解决淘宝商品的类目预测问题的项目,恰好硕士毕业时论文题目便是文本分类问题,趁此机会总结下文本分类 ...
- PyTorch中使用深度学习(CNN和LSTM)的自动图像标题
介绍 深度学习现在是一个非常猖獗的领域 - 有如此多的应用程序日复一日地出现.深入了解深度学习的最佳方法是亲自动手.尽可能多地参与项目,并尝试自己完成.这将帮助您更深入地掌握主题,并帮助您成为更好的深 ...
- 深度学习:浅谈RNN、LSTM+Kreas实现与应用
主要针对RNN与LSTM的结构及其原理进行详细的介绍,了解什么是RNN,RNN的1对N.N对1的结构,什么是LSTM,以及LSTM中的三门(input.ouput.forget),后续将利用深度学习框 ...
随机推荐
- Day6_内置函数
定义完一个有名函数,可以直接利用函数名+括号来执行,例如:func() 有名函数: def func(x,y,z=1): return x+y+z 匿名函数: lambda x,y,z=1:x+y+z ...
- Windows10上搭建Kinect 2 开发环境
因为Visual Studio 2017的应用最低只能面向windows10,而Kinect SDK 2.0的系统版本要求是windows 8,所以不得不下载Visual Studio 2013 co ...
- java开发区块链只需150行代码
本文目的是通过java实战开发教程理解区块链是什么.将通过实战入门学习,用Java自学开发一个很基本的区块链,并在此基础上能扩展如web框架应用等.这个基本的java区块链也实现简单的工作量证明系统. ...
- Sass快速入门学习笔记
1. 使用变量; sass让人们受益的一个重要特性就是它为css引入了变量.你可以把反复使用的css属性值 定义成变量,然后通过变量名来引用它们,而无需重复书写这一属性值.或者,对于仅使用过一 次的属 ...
- 并查集(union-find set)与Kruskal算法
并查集 并查集处理的是集合之间的关系,即‘union' , 'find' .在这种数据类型中,N个不同元素被分成若干个组,每组是一个集合,这种集合叫做分离集合.并查集支持查找一个元素所属的集合和两个元 ...
- 【转】javascript 浮点数运算问题
大多数语言在处理浮点数的时候都会遇到精度问题,但是在JS里似乎特别严重,来看一个例子 alert(45.6*13); 结果居然是592.800000000001,当然加法之类的也会有这个问题 那这是j ...
- python logging method 02
基本用法 下面的代码展示了logging最基本的用法. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 ...
- linux基础和vim基本使用
Liunx基础 1. 目录 /:根目录,一般根目录只存放目录,在linux下有且只有一个根目录.所有的东西都是从这里开始,例如:/home就是先从根目录/开始,再进入到home目录. /bin ...
- PAT1064: Compelte Binary Search Tree
1064. Complete Binary Search Tree (30) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHE ...
- Unity 从StreamingAssets文件夹和PersistentData文件夹 保存读取AssetBundle资源
项目中的资源一般我们打包成AssetBundle格式 方便我们加载和热更 而AssetBundle文件 一般保存在StreamingAssets文件夹或则PersistentData文件夹 首先我们看 ...