Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.

Example:

Input: [-2,1,-3,4,-1,2,1,-5,4],
Output: 6
Explanation: [4,-1,2,1] has the largest sum = 6.

Follow up:

If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.

 

这道题让求最大子数组之和,并且要用两种方法来解,分别是 O(n) 的解法,还有用分治法 Divide and Conquer Approach,这个解法的时间复杂度是 O(nlgn),那就先来看 O(n) 的解法,定义两个变量 res 和 curSum,其中 res 保存最终要返回的结果,即最大的子数组之和,curSum 初始值为0,每遍历一个数字 num,比较 curSum + num 和 num 中的较大值存入 curSum,然后再把 res 和 curSum 中的较大值存入 res,以此类推直到遍历完整个数组,可得到最大子数组的值存在 res 中,代码如下:

C++ 解法一:

class Solution {
public:
int maxSubArray(vector<int>& nums) {
int res = INT_MIN, curSum = ;
for (int num : nums) {
curSum = max(curSum + num, num);
res = max(res, curSum);
}
return res;
}
};

Java 解法一:

public class Solution {
public int maxSubArray(int[] nums) {
int res = Integer.MIN_VALUE, curSum = 0;
for (int num : nums) {
curSum = Math.max(curSum + num, num);
res = Math.max(res, curSum);
}
return res;
}
}

题目还要求我们用分治法 Divide and Conquer Approach 来解,这个分治法的思想就类似于二分搜索法,需要把数组一分为二,分别找出左边和右边的最大子数组之和,然后还要从中间开始向左右分别扫描,求出的最大值分别和左右两边得出的最大值相比较取最大的那一个,代码如下:

C++ 解法二:

class Solution {
public:
int maxSubArray(vector<int>& nums) {
if (nums.empty()) return ;
return helper(nums, , (int)nums.size() - );
}
int helper(vector<int>& nums, int left, int right) {
if (left >= right) return nums[left];
int mid = left + (right - left) / ;
int lmax = helper(nums, left, mid - );
int rmax = helper(nums, mid + , right);
int mmax = nums[mid], t = mmax;
for (int i = mid - ; i >= left; --i) {
t += nums[i];
mmax = max(mmax, t);
}
t = mmax;
for (int i = mid + ; i <= right; ++i) {
t += nums[i];
mmax = max(mmax, t);
}
return max(mmax, max(lmax, rmax));
}
};

Java 解法二:

public class Solution {
public int maxSubArray(int[] nums) {
if (nums.length == 0) return 0;
return helper(nums, 0, nums.length - 1);
}
public int helper(int[] nums, int left, int right) {
if (left >= right) return nums[left];
int mid = left + (right - left) / 2;
int lmax = helper(nums, left, mid - 1);
int rmax = helper(nums, mid + 1, right);
int mmax = nums[mid], t = mmax;
for (int i = mid - 1; i >= left; --i) {
t += nums[i];
mmax = Math.max(mmax, t);
}
t = mmax;
for (int i = mid + 1; i <= right; ++i) {
t += nums[i];
mmax = Math.max(mmax, t);
}
return Math.max(mmax, Math.max(lmax, rmax));
}
}

Github 同步地址:

https://github.com/grandyang/leetcode/issues/53

类似题目:

Best Time to Buy and Sell Stock

Maximum Product Subarray

Degree of an Array

Longest Turbulent Subarray

参考资料:

https://leetcode.com/problems/maximum-subarray/

https://leetcode.com/problems/maximum-subarray/discuss/20211/Accepted-O(n)-solution-in-java

https://leetcode.com/problems/maximum-subarray/discuss/20193/DP-solution-and-some-thoughts

https://leetcode.com/problems/maximum-subarray/discuss/20200/Share-my-solutions-both-greedy-and-divide-and-conquer

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Maximum Subarray 最大子数组的更多相关文章

  1. [LeetCode] 53. Maximum Subarray 最大子数组

    Given an integer array nums, find the contiguous subarray (containing at least one number) which has ...

  2. [leetcode]53. Maximum Subarray最大子数组和

    Given an integer array nums, find the contiguous subarray (containing at least one number) which has ...

  3. [LeetCode] 53. Maximum Subarray 最大子数组 --动态规划+分治

    Given an integer array nums, find the contiguous subarray (containing at least one number) which has ...

  4. [LintCode] Maximum Subarray 最大子数组

    Given an array of integers, find a contiguous subarray which has the largest sum. Notice The subarra ...

  5. [Leetcode] maximun subarray 最大子数组

    Find the contiguous subarray within an array (containing at least one number) which has the largest ...

  6. 【LeetCode每天一题】Maximum Subarray(最大子数组)

    Given an integer array nums, find the contiguous subarray (containing at least one number) which has ...

  7. Maximum Subarray(最大子数组)

    Find the contiguous subarray within an array (containing at least one number) which has the largest ...

  8. 【LeetCode】53. Maximum Subarray 最大子序和 解题报告(Python & C++ & Java)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 暴力解法 动态规划 日期 题目地址: https:/ ...

  9. LEETCODE —— Maximum Subarray [一维DP]

    Maximum Subarray Find the contiguous subarray within an array (containing at least one number) which ...

随机推荐

  1. iOS 触摸事件与UIResponder(内容根据iOS编程编写)

    触摸事件 因为 UIView 是 UIResponder 的子类,所以覆盖以下四个方法就可以处理四种不同的触摸事件: 1.  一根手指或多根手指触摸屏幕 - (void)touchesBegan:(N ...

  2. IOS学习之-私人通讯录

    通过一段时间IOS的学习完成了一个简单的应用,"私人通讯录". 运行效果如下图: 1.登录页 2.通讯录列表 3.添加 4.编辑 5.删除 6.注销 总视图结构如下图: 总结本程序 ...

  3. 『.NET Core CLI工具文档』(七)dotnet-new

    说明:本文是个人翻译文章,由于个人水平有限,有不对的地方请大家帮忙更正. 原文:dotnet-new 翻译:dotnet-new 名称 dotnet-new -- 创建一个新的 .NET Core 项 ...

  4. Eclipse 日期和时间格式自定义

    点击下载Eclipse插件  org.eclipse.text_3.5.300.v20130515-1451.jar  覆盖下图所示的jar文件. /************************* ...

  5. Android 手机卫士7--黑名单拦截

    1,黑名单数据库创建 三个字段(_id 自增长字段 phone 黑名单号码 mode 拦截类型) 创建表的sql语句 create table blacknumber (_id integer pri ...

  6. Mybatis框架的模糊查询(多种写法)、删除、添加(四)

    学习Mybatis这么多天,那么我给大家分享一下我的学习成果.从最基础的开始配置. 一.创建一个web项目,看一下项目架构 二.说道项目就会想到需要什么jar 三.就是准备大配置链接Orcl数据库 & ...

  7. html和html5详解

    最近看群里聊天聊得最火热的莫过于手机网站和html5这两个词.可能有人会问,这两者有什么关系呢?随着这移动互联网快速发展的时代,尤其是4G时代已经来临的时刻,加上微软对"XP系统" ...

  8. 关于IOS中safari下的select下拉菜单,文字过长不换行的问题

    今天遇到下图这种问题,文字过长,显示不全.折腾了老半天,在网上搜了半天也找不到解决方案. 于是问了下同事,同事提到了<optgroup>,这个标签厉害. <optgroup> ...

  9. javascript 练习示例(一)

    confirm 点确定返回true,点取消返回false prompt 点确定返回用户输入的字符串,点取消返回null 判断奇偶性 var isOdd = prompt('请输入你得的数字'); if ...

  10. JavaScript中‘this’关键词的优雅解释

    本文转载自:众成翻译 译者:MinweiShen 链接:http://www.zcfy.cc/article/901 原文:https://rainsoft.io/gentle-explanation ...